[bc248f8] | 1 | #!/usr/bin/env python |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | """ |
---|
| 4 | Fit model using multiple scattering. |
---|
| 5 | |
---|
| 6 | As of this writing, multiscattering isn't integrated into sasmodels, and a |
---|
| 7 | number of hacks are required to get it running as a fit. |
---|
| 8 | |
---|
| 9 | The appropriate items need to be on the python path. These include |
---|
| 10 | sasview (for reading the data), sasmodels and bumps. The multiscat module |
---|
| 11 | (currently in the sasmodels/explore directory) is also needed, either beside |
---|
| 12 | this example fit file, or by putting sasmdoels/explore on the python path. |
---|
| 13 | |
---|
| 14 | On Unix/Mac running as developer I do:: |
---|
| 15 | |
---|
| 16 | # Show the model without fitting |
---|
| 17 | PYTHONPATH=..:../explore:../../bumps:../../sasview/src python multiscatfit.py |
---|
| 18 | |
---|
| 19 | # Run the fit |
---|
| 20 | PYTHONPATH=..:../explore:../../bumps:../../sasview/src ../../bumps/run.py \ |
---|
| 21 | multiscatfit.py --store=/tmp/t1 |
---|
| 22 | |
---|
| 23 | You may be able to run multiscatfit.py against the distributed sasview |
---|
| 24 | application (if it is new enough, and if you have multiscat.py in the |
---|
| 25 | same directory). You probably need a command such as:: |
---|
| 26 | |
---|
| 27 | sasview.exe bumps.cli multiscatfit.py --store=t1 |
---|
| 28 | """ |
---|
| 29 | |
---|
| 30 | import sys |
---|
| 31 | from bumps.names import * |
---|
| 32 | from sasmodels.core import load_model |
---|
| 33 | from sasmodels.bumps_model import Model, Experiment |
---|
| 34 | from sasmodels.data import load_data, set_beam_stop, set_top |
---|
| 35 | |
---|
[49d1f8b8] | 36 | from sasmodels.multiscat import MultipleScattering |
---|
[bc248f8] | 37 | |
---|
| 38 | ## Load the data |
---|
| 39 | #data = load_data('DEC07267.DAT') |
---|
| 40 | #set_beam_stop(data, 0.003, outer=0.025) |
---|
[49d1f8b8] | 41 | data = load_data('latex_smeared.xml', index=0) |
---|
[bc248f8] | 42 | |
---|
| 43 | ## Define the model |
---|
| 44 | kernel = load_model("ellipsoid") |
---|
| 45 | |
---|
| 46 | model = Model( |
---|
| 47 | kernel, |
---|
| 48 | scale=0.005, background=0.05, |
---|
| 49 | radius_polar=2200, radius_equatorial=2200, |
---|
| 50 | sld=.291, sld_solvent=7.105, |
---|
| 51 | #theta=90, theta_pd=0, theta_pd_n=0, theta_pd_nsigma=3, |
---|
| 52 | #phi=90, phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3, |
---|
| 53 | radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0, |
---|
| 54 | radius_equatorial_pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_nsigma=0, |
---|
| 55 | ) |
---|
| 56 | |
---|
| 57 | # SET THE FITTING PARAMETERS |
---|
| 58 | model.radius_polar.range(15, 3000) |
---|
| 59 | model.radius_equatorial.range(15, 3000) |
---|
| 60 | #model.theta.range(0, 90) |
---|
| 61 | #model.theta_pd.range(0,10) |
---|
| 62 | #model.phi_pd.range(0,20) |
---|
| 63 | #model.phi.range(0, 180) |
---|
| 64 | model.background.range(0,1000) |
---|
| 65 | model.scale.range(0, 0.1) |
---|
| 66 | |
---|
| 67 | # Mulitple scattering probability parameter |
---|
[49d1f8b8] | 68 | # HACK: the probability is stuffed in as an extra parameter to the experiment. |
---|
[bc248f8] | 69 | probability = Parameter(name="probability", value=0.0) |
---|
| 70 | probability.range(0.0, 0.9) |
---|
| 71 | |
---|
[49d1f8b8] | 72 | M = Experiment(data=data, model=model, extra_pars={'probability': probability}) |
---|
[bc248f8] | 73 | |
---|
| 74 | # Stack mulitple scattering on top of the existing resolution function. |
---|
| 75 | # Because resolution functions in sasview don't have fitting parameters, |
---|
| 76 | # we instead allow the multiple scattering calculator to take a function |
---|
| 77 | # instead of a probability. This function returns the current value of |
---|
| 78 | # the parameter. ** THIS IS TEMPORARY ** when multiple scattering is |
---|
| 79 | # properly integrated into sasmodels and sasview, its fittable parameter |
---|
| 80 | # will be treated like the model parameters. |
---|
| 81 | M.resolution = MultipleScattering(resolution=M.resolution, |
---|
| 82 | probability=lambda: probability.value, |
---|
| 83 | ) |
---|
| 84 | M._kernel_inputs = M.resolution.q_calc |
---|
| 85 | problem = FitProblem(M) |
---|
| 86 | |
---|
| 87 | if __name__ == "__main__": |
---|
| 88 | #M.theory() |
---|
| 89 | M.plot() |
---|
| 90 | import pylab; pylab.show() |
---|