source: sasmodels/doc/ref/magnetism/magnetism.rst @ d3e3f756

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since d3e3f756 was deb854f, checked in by smk78, 8 years ago

Updated help text regarding which models now have magnetic scattering
support.

  • Property mode set to 100644
File size: 3.1 KB
RevLine 
[9f60c06]1.. _magnetism:
2
3Polarisation/Magnetic Scattering
4=======================================================
5
[deb854f]6In earlier versions of SasView magnetic scattering was implemented in just five
7(2D) models
[9f60c06]8
9*  :ref:`sphere`
10*  :ref:`core-shell-sphere`
11*  :ref:`core-multi-shell`
12*  :ref:`cylinder`
13*  :ref:`parallelepiped`
14
[deb854f]15From SasView 4.x it is implemented on most models in the 'shape' category.
16
[9f60c06]17In general, the scattering length density (SLD = $\beta$) in each region where the
18SLD is uniform, is a combination of the nuclear and magnetic SLDs and, for polarised
19neutrons, also depends on the spin states of the neutrons.
20
21For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$
[524e5c4]22perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic
[9f60c06]23scattering length.
24
25
26.. figure::
[5e1d6b0]27    mag_img/mag_vector.bmp
[9f60c06]28
29The magnetic scattering length density is then
30
31.. math::
32    \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot
33    \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp}
34
35where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the
36Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$
37is the Pauli spin.
38
39Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-)
40to the $x'$ axis, the possible spin states after the sample are then
41
42No spin-flips (+ +) and (- -)
43
44Spin-flips    (+ -) and (- +)
45
46.. figure::
[5e1d6b0]47    mag_img/M_angles_pic.bmp
[9f60c06]48
49If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are
50$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the
51neutrons, the scattering length densities, including the nuclear scattering
[30fab25]52length density ($\beta{_N}$) are
[9f60c06]53
54.. math::
55    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'}
56    \text{ when there are no spin-flips}
57
58and
59
60.. math::
61    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'})
62    \text{ when there are}
63
64where
65
66.. math::
67    M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\
68    M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\
69    M_{\perp z'} = M_{0z} \\
70    M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\
71    M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi
72
73Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components
74of the magnetization vector given in the laboratory xyz frame given by
75
76.. math::
77    M_{0x} = M_0\cos\theta_M\cos\phi_M \\
78    M_{0y} = M_0\sin\theta_M \\
79    M_{0z} = -M_0\cos\theta_M\sin\phi_M
80
81and the magnetization angles $\theta_M$ and $\phi_M$ are defined in
82the figure above.
83
84The user input parameters are:
85
86===========   ================================================================
87 M0_sld        = $D_M M_0$
[524e5c4]88 Up_theta      = $\theta_{up}$
[9f60c06]89 M_theta       = $\theta_M$
90 M_phi         = $\phi_M$
91 Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample
92 Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample
93===========   ================================================================
94
95.. note::
96    The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1.
97
98.. note::
99    This help document was last changed by Steve King, 02May2015
Note: See TracBrowser for help on using the repository browser.