source: sasmodels/doc/ref/magnetism/magnetism.rst @ 725ee36

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 725ee36 was b1c40bee, checked in by wojciech, 8 years ago

Moving magnetism file to seprate directory and temporarily revereting old magnetism link

  • Property mode set to 100644
File size: 3.0 KB
RevLine 
[9f60c06]1.. _magnetism:
2
3Polarisation/Magnetic Scattering
4=======================================================
5
[40e415d]6Magnetic scattering is implemented in five (2D) models
[9f60c06]7
8*  :ref:`sphere`
9*  :ref:`core-shell-sphere`
10*  :ref:`core-multi-shell`
11*  :ref:`cylinder`
12*  :ref:`parallelepiped`
13
14In general, the scattering length density (SLD = $\beta$) in each region where the
15SLD is uniform, is a combination of the nuclear and magnetic SLDs and, for polarised
16neutrons, also depends on the spin states of the neutrons.
17
18For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$
19perpendicular to the scattering vector $\mathbf{Q}$ contributes to the the magnetic
20scattering length.
21
22
23.. figure::
24    img/mag_vector.bmp
25
26The magnetic scattering length density is then
27
28.. math::
29    \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot
30    \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp}
31
32where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the
33Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$
34is the Pauli spin.
35
36Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-)
37to the $x'$ axis, the possible spin states after the sample are then
38
39No spin-flips (+ +) and (- -)
40
41Spin-flips    (+ -) and (- +)
42
43.. figure::
44    img/M_angles_pic.bmp
45
46If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are
47$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the
48neutrons, the scattering length densities, including the nuclear scattering
49length density ($\beta_N$) are
50
51.. math::
52    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'}
53    \text{ when there are no spin-flips}
54
55and
56
57.. math::
58    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'})
59    \text{ when there are}
60
61where
62
63.. math::
64    M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\
65    M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\
66    M_{\perp z'} = M_{0z} \\
67    M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\
68    M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi
69
70Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components
71of the magnetization vector given in the laboratory xyz frame given by
72
73.. math::
74    M_{0x} = M_0\cos\theta_M\cos\phi_M \\
75    M_{0y} = M_0\sin\theta_M \\
76    M_{0z} = -M_0\cos\theta_M\sin\phi_M
77
78and the magnetization angles $\theta_M$ and $\phi_M$ are defined in
79the figure above.
80
81The user input parameters are:
82
83===========   ================================================================
84 M0_sld        = $D_M M_0$
85 Up_theta      = $\theta_up$
86 M_theta       = $\theta_M$
87 M_phi         = $\phi_M$
88 Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample
89 Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample
90===========   ================================================================
91
92.. note::
93    The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1.
94
95.. note::
96    This help document was last changed by Steve King, 02May2015
Note: See TracBrowser for help on using the repository browser.