[9f60c06] | 1 | .. _magnetism: |
---|
| 2 | |
---|
| 3 | Polarisation/Magnetic Scattering |
---|
| 4 | ======================================================= |
---|
| 5 | |
---|
| 6 | Magnetic scattering is implemented in seven (2D) models |
---|
| 7 | |
---|
| 8 | * :ref:`sphere` |
---|
| 9 | * :ref:`core-shell-sphere` |
---|
| 10 | * :ref:`core-multi-shell` |
---|
| 11 | * :ref:`cylinder` |
---|
| 12 | * :ref:`parallelepiped` |
---|
| 13 | |
---|
| 14 | In general, the scattering length density (SLD = $\beta$) in each region where the |
---|
| 15 | SLD is uniform, is a combination of the nuclear and magnetic SLDs and, for polarised |
---|
| 16 | neutrons, also depends on the spin states of the neutrons. |
---|
| 17 | |
---|
| 18 | For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$ |
---|
| 19 | perpendicular to the scattering vector $\mathbf{Q}$ contributes to the the magnetic |
---|
| 20 | scattering length. |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | .. figure:: |
---|
| 24 | img/mag_vector.bmp |
---|
| 25 | |
---|
| 26 | The magnetic scattering length density is then |
---|
| 27 | |
---|
| 28 | .. math:: |
---|
| 29 | \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot |
---|
| 30 | \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp} |
---|
| 31 | |
---|
| 32 | where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the |
---|
| 33 | Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$ |
---|
| 34 | is the Pauli spin. |
---|
| 35 | |
---|
| 36 | Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-) |
---|
| 37 | to the $x'$ axis, the possible spin states after the sample are then |
---|
| 38 | |
---|
| 39 | No spin-flips (+ +) and (- -) |
---|
| 40 | |
---|
| 41 | Spin-flips (+ -) and (- +) |
---|
| 42 | |
---|
| 43 | .. figure:: |
---|
| 44 | img/M_angles_pic.bmp |
---|
| 45 | |
---|
| 46 | If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are |
---|
| 47 | $\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the |
---|
| 48 | neutrons, the scattering length densities, including the nuclear scattering |
---|
| 49 | length density ($\beta_N$) are |
---|
| 50 | |
---|
| 51 | .. math:: |
---|
| 52 | \beta_{\pm\pm} = \beta_N \mp D_M M_{\perp x'} |
---|
| 53 | \text{ when there are no spin-flips} |
---|
| 54 | |
---|
| 55 | and |
---|
| 56 | |
---|
| 57 | .. math:: |
---|
| 58 | \beta_{\pm\mp} = -D_M (M_{\perp y'} \pm iM_{\perp z'}) |
---|
| 59 | \text{ when there are} |
---|
| 60 | |
---|
| 61 | where |
---|
| 62 | |
---|
| 63 | .. math:: |
---|
| 64 | M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ |
---|
| 65 | M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ |
---|
| 66 | M_{\perp z'} = M_{0z} \\ |
---|
| 67 | M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ |
---|
| 68 | M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi |
---|
| 69 | |
---|
| 70 | Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components |
---|
| 71 | of the magnetization vector given in the laboratory xyz frame given by |
---|
| 72 | |
---|
| 73 | .. math:: |
---|
| 74 | M_{0x} = M_0\cos\theta_M\cos\phi_M \\ |
---|
| 75 | M_{0y} = M_0\sin\theta_M \\ |
---|
| 76 | M_{0z} = -M_0\cos\theta_M\sin\phi_M |
---|
| 77 | |
---|
| 78 | and the magnetization angles $\theta_M$ and $\phi_M$ are defined in |
---|
| 79 | the figure above. |
---|
| 80 | |
---|
| 81 | The user input parameters are: |
---|
| 82 | |
---|
| 83 | =========== ================================================================ |
---|
| 84 | M0_sld = $D_M M_0$ |
---|
| 85 | Up_theta = $\theta_up$ |
---|
| 86 | M_theta = $\theta_M$ |
---|
| 87 | M_phi = $\phi_M$ |
---|
| 88 | Up_frac_i = (spin up)/(spin up + spin down) neutrons *before* the sample |
---|
| 89 | Up_frac_f = (spin up)/(spin up + spin down) neutrons *after* the sample |
---|
| 90 | =========== ================================================================ |
---|
| 91 | |
---|
| 92 | .. note:: |
---|
| 93 | The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1. |
---|
| 94 | |
---|
| 95 | .. note:: |
---|
| 96 | This help document was last changed by Steve King, 02May2015 |
---|