[990d8df] | 1 | .. pd_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
| 6 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 7 | |
---|
[eda8b30] | 8 | .. _polydispersityhelp: |
---|
| 9 | |
---|
[97d172c] | 10 | Polydispersity & Orientational Distributions |
---|
| 11 | -------------------------------------------- |
---|
[990d8df] | 12 | |
---|
[97d172c] | 13 | For some models we can calculate the average intensity for a population of |
---|
| 14 | particles that possess size and/or orientational (ie, angular) distributions. |
---|
| 15 | In SasView we call the former *polydispersity* but use the parameter *PD* to |
---|
| 16 | parameterise both. In other words, the meaning of *PD* in a model depends on |
---|
| 17 | the actual parameter it is being applied too. |
---|
| 18 | |
---|
| 19 | The resultant intensity is then normalized by the average particle volume such |
---|
| 20 | that |
---|
[990d8df] | 21 | |
---|
| 22 | .. math:: |
---|
| 23 | |
---|
| 24 | P(q) = \text{scale} \langle F^* F \rangle / V + \text{background} |
---|
| 25 | |
---|
[d712a0f] | 26 | where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an |
---|
[97d172c] | 27 | average over the distribution $f(x; \bar x, \sigma)$, giving |
---|
[d712a0f] | 28 | |
---|
| 29 | .. math:: |
---|
| 30 | |
---|
| 31 | P(q) = \frac{\text{scale}}{V} \int_\mathbb{R} |
---|
| 32 | f(x; \bar x, \sigma) F^2(q, x)\, dx + \text{background} |
---|
[990d8df] | 33 | |
---|
[ed5b109] | 34 | Each distribution is characterized by a center value $\bar x$ or |
---|
| 35 | $x_\text{med}$, a width parameter $\sigma$ (note this is *not necessarily* |
---|
[97d172c] | 36 | the standard deviation, so read the description of the distribution carefully), |
---|
| 37 | the number of sigmas $N_\sigma$ to include from the tails of the distribution, |
---|
| 38 | and the number of points used to compute the average. The center of the |
---|
| 39 | distribution is set by the value of the model parameter. |
---|
[ed5b109] | 40 | |
---|
[29afc50] | 41 | The distribution width applied to *volume* (ie, shape-describing) parameters |
---|
| 42 | is relative to the center value such that $\sigma = \mathrm{PD} \cdot \bar x$. |
---|
[97d172c] | 43 | However, the distribution width applied to *orientation* parameters is just |
---|
| 44 | $\sigma = \mathrm{PD}$. |
---|
[ed5b109] | 45 | |
---|
| 46 | $N_\sigma$ determines how far into the tails to evaluate the distribution, |
---|
| 47 | with larger values of $N_\sigma$ required for heavier tailed distributions. |
---|
[990d8df] | 48 | The scattering in general falls rapidly with $qr$ so the usual assumption |
---|
[d712a0f] | 49 | that $f(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)f(r - 3\sigma_r)$ |
---|
[990d8df] | 50 | will not contribute much to the average may not hold when particles are large. |
---|
| 51 | This, too, will require increasing $N_\sigma$. |
---|
| 52 | |
---|
| 53 | Users should note that the averaging computation is very intensive. Applying |
---|
[97d172c] | 54 | polydispersion and/or orientational distributions to multiple parameters at |
---|
| 55 | the same time, or increasing the number of points in the distribution, will |
---|
| 56 | require patience! However, the calculations are generally more robust with |
---|
| 57 | more data points or more angles. |
---|
[990d8df] | 58 | |
---|
[22279a4] | 59 | The following distribution functions are provided: |
---|
[990d8df] | 60 | |
---|
[75e4319] | 61 | * *Uniform Distribution* |
---|
[5026e05] | 62 | * *Rectangular Distribution* |
---|
[990d8df] | 63 | * *Gaussian Distribution* |
---|
[5026e05] | 64 | * *Boltzmann Distribution* |
---|
[990d8df] | 65 | * *Lognormal Distribution* |
---|
| 66 | * *Schulz Distribution* |
---|
| 67 | * *Array Distribution* |
---|
| 68 | |
---|
| 69 | These are all implemented as *number-average* distributions. |
---|
| 70 | |
---|
[5026e05] | 71 | Additional distributions are under consideration. |
---|
[990d8df] | 72 | |
---|
[86bb5df] | 73 | **Beware: when the Polydispersity & Orientational Distribution panel in SasView is** |
---|
| 74 | **first opened, the default distribution for all parameters is the Gaussian Distribution.** |
---|
| 75 | **This may not be suitable. See Suggested Applications below.** |
---|
| 76 | |
---|
[d712a0f] | 77 | .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace |
---|
| 78 | the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), |
---|
| 79 | 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ |
---|
[97d172c] | 80 | in order to make the terminology describing distributions of chemical |
---|
| 81 | properties unambiguous. However, these terms are unrelated to the |
---|
| 82 | proportional size distributions and orientational distributions used in |
---|
| 83 | SasView models. |
---|
[d712a0f] | 84 | |
---|
[5026e05] | 85 | Suggested Applications |
---|
| 86 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
[990d8df] | 87 | |
---|
[97d172c] | 88 | If applying polydispersion to parameters describing particle sizes, consider using |
---|
[5026e05] | 89 | the Lognormal or Schulz distributions. |
---|
[990d8df] | 90 | |
---|
[ed5b109] | 91 | If applying polydispersion to parameters describing interfacial thicknesses |
---|
[97d172c] | 92 | or angular orientations, consider using the Gaussian or Boltzmann distributions. |
---|
[990d8df] | 93 | |
---|
[29afc50] | 94 | If applying polydispersion to parameters describing angles, use the Uniform |
---|
| 95 | distribution. Beware of using distributions that are always positive (eg, the |
---|
| 96 | Lognormal) because angles can be negative! |
---|
| 97 | |
---|
[5026e05] | 98 | The array distribution allows a user-defined distribution to be applied. |
---|
[990d8df] | 99 | |
---|
[5026e05] | 100 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[990d8df] | 101 | |
---|
[5026e05] | 102 | Uniform Distribution |
---|
| 103 | ^^^^^^^^^^^^^^^^^^^^ |
---|
[990d8df] | 104 | |
---|
[5026e05] | 105 | The Uniform Distribution is defined as |
---|
[990d8df] | 106 | |
---|
[f4ae8c4] | 107 | .. math:: |
---|
[990d8df] | 108 | |
---|
[f4ae8c4] | 109 | f(x) = \frac{1}{\text{Norm}} |
---|
| 110 | \begin{cases} |
---|
| 111 | 1 & \text{for } |x - \bar x| \leq \sigma \\ |
---|
| 112 | 0 & \text{for } |x - \bar x| > \sigma |
---|
| 113 | \end{cases} |
---|
[990d8df] | 114 | |
---|
[f4ae8c4] | 115 | where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the |
---|
| 116 | distribution, $\sigma$ is the half-width, and *Norm* is a normalization |
---|
| 117 | factor which is determined during the numerical calculation. |
---|
[990d8df] | 118 | |
---|
[f4ae8c4] | 119 | The polydispersity in sasmodels is given by |
---|
[990d8df] | 120 | |
---|
[f4ae8c4] | 121 | .. math:: \text{PD} = \sigma / \bar x |
---|
[92d330fd] | 122 | |
---|
[f4ae8c4] | 123 | .. figure:: pd_uniform.jpg |
---|
[3d58247] | 124 | |
---|
[f4ae8c4] | 125 | Uniform distribution. |
---|
[990d8df] | 126 | |
---|
[5026e05] | 127 | The value $N_\sigma$ is ignored for this distribution. |
---|
| 128 | |
---|
| 129 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 130 | |
---|
| 131 | Rectangular Distribution |
---|
[75e4319] | 132 | ^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 133 | |
---|
[5026e05] | 134 | The Rectangular Distribution is defined as |
---|
[75e4319] | 135 | |
---|
[f4ae8c4] | 136 | .. math:: |
---|
[75e4319] | 137 | |
---|
[f4ae8c4] | 138 | f(x) = \frac{1}{\text{Norm}} |
---|
| 139 | \begin{cases} |
---|
| 140 | 1 & \text{for } |x - \bar x| \leq w \\ |
---|
| 141 | 0 & \text{for } |x - \bar x| > w |
---|
| 142 | \end{cases} |
---|
[75e4319] | 143 | |
---|
[f4ae8c4] | 144 | where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the |
---|
| 145 | distribution, $w$ is the half-width, and *Norm* is a normalization |
---|
| 146 | factor which is determined during the numerical calculation. |
---|
[75e4319] | 147 | |
---|
[f4ae8c4] | 148 | Note that the standard deviation and the half width $w$ are different! |
---|
[75e4319] | 149 | |
---|
[f4ae8c4] | 150 | The standard deviation is |
---|
[75e4319] | 151 | |
---|
[f4ae8c4] | 152 | .. math:: \sigma = w / \sqrt{3} |
---|
[75e4319] | 153 | |
---|
[f4ae8c4] | 154 | whilst the polydispersity in sasmodels is given by |
---|
[92d330fd] | 155 | |
---|
[f4ae8c4] | 156 | .. math:: \text{PD} = \sigma / \bar x |
---|
[5026e05] | 157 | |
---|
[f4ae8c4] | 158 | .. figure:: pd_rectangular.jpg |
---|
[5026e05] | 159 | |
---|
[f4ae8c4] | 160 | Rectangular distribution. |
---|
[ed5b109] | 161 | |
---|
[f4ae8c4] | 162 | .. note:: The Rectangular Distribution is deprecated in favour of the |
---|
| 163 | Uniform Distribution above and is described here for backwards |
---|
| 164 | compatibility with earlier versions of SasView only. |
---|
[75e4319] | 165 | |
---|
[990d8df] | 166 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 167 | |
---|
| 168 | Gaussian Distribution |
---|
| 169 | ^^^^^^^^^^^^^^^^^^^^^ |
---|
| 170 | |
---|
| 171 | The Gaussian Distribution is defined as |
---|
| 172 | |
---|
[f4ae8c4] | 173 | .. math:: |
---|
[5026e05] | 174 | |
---|
[f4ae8c4] | 175 | f(x) = \frac{1}{\text{Norm}} |
---|
| 176 | \exp\left(-\frac{(x - \bar x)^2}{2\sigma^2}\right) |
---|
[990d8df] | 177 | |
---|
[f4ae8c4] | 178 | where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the |
---|
| 179 | distribution and *Norm* is a normalization factor which is determined |
---|
| 180 | during the numerical calculation. |
---|
[990d8df] | 181 | |
---|
[f4ae8c4] | 182 | The polydispersity in sasmodels is given by |
---|
[990d8df] | 183 | |
---|
[f4ae8c4] | 184 | .. math:: \text{PD} = \sigma / \bar x |
---|
[5026e05] | 185 | |
---|
[f4ae8c4] | 186 | .. figure:: pd_gaussian.jpg |
---|
[5026e05] | 187 | |
---|
[f4ae8c4] | 188 | Normal distribution. |
---|
[5026e05] | 189 | |
---|
| 190 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 191 | |
---|
| 192 | Boltzmann Distribution |
---|
| 193 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 194 | |
---|
| 195 | The Boltzmann Distribution is defined as |
---|
[990d8df] | 196 | |
---|
[f4ae8c4] | 197 | .. math:: |
---|
[990d8df] | 198 | |
---|
[f4ae8c4] | 199 | f(x) = \frac{1}{\text{Norm}} |
---|
| 200 | \exp\left(-\frac{ | x - \bar x | }{\sigma}\right) |
---|
[990d8df] | 201 | |
---|
[f4ae8c4] | 202 | where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the |
---|
| 203 | distribution and *Norm* is a normalization factor which is determined |
---|
| 204 | during the numerical calculation. |
---|
[5026e05] | 205 | |
---|
[f4ae8c4] | 206 | The width is defined as |
---|
[5026e05] | 207 | |
---|
[f4ae8c4] | 208 | .. math:: \sigma=\frac{k T}{E} |
---|
[5026e05] | 209 | |
---|
[f4ae8c4] | 210 | which is the inverse Boltzmann factor, where $k$ is the Boltzmann constant, |
---|
| 211 | $T$ the temperature in Kelvin and $E$ a characteristic energy per particle. |
---|
[5026e05] | 212 | |
---|
[f4ae8c4] | 213 | .. figure:: pd_boltzmann.jpg |
---|
[5026e05] | 214 | |
---|
[f4ae8c4] | 215 | Boltzmann distribution. |
---|
[990d8df] | 216 | |
---|
| 217 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 218 | |
---|
| 219 | Lognormal Distribution |
---|
| 220 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 221 | |
---|
[ed5b109] | 222 | The Lognormal Distribution describes a function of $x$ where $\ln (x)$ has |
---|
| 223 | a normal distribution. The result is a distribution that is skewed towards |
---|
| 224 | larger values of $x$. |
---|
[5026e05] | 225 | |
---|
[990d8df] | 226 | The Lognormal Distribution is defined as |
---|
| 227 | |
---|
[f4ae8c4] | 228 | .. math:: |
---|
[990d8df] | 229 | |
---|
[f4ae8c4] | 230 | f(x) = \frac{1}{\text{Norm}}\frac{1}{x\sigma} |
---|
| 231 | \exp\left(-\frac{1}{2} |
---|
| 232 | \bigg(\frac{\ln(x) - \mu}{\sigma}\bigg)^2\right) |
---|
[990d8df] | 233 | |
---|
[f4ae8c4] | 234 | where *Norm* is a normalization factor which will be determined during |
---|
| 235 | the numerical calculation, $\mu=\ln(x_\text{med})$ and $x_\text{med}$ |
---|
| 236 | is the *median* value of the *lognormal* distribution, but $\sigma$ is |
---|
| 237 | a parameter describing the width of the underlying *normal* distribution. |
---|
[ed5b109] | 238 | |
---|
[f4ae8c4] | 239 | $x_\text{med}$ will be the value given for the respective size parameter |
---|
| 240 | in sasmodels, for example, *radius=60*. |
---|
[990d8df] | 241 | |
---|
[f4ae8c4] | 242 | The polydispersity in sasmodels is given by |
---|
[990d8df] | 243 | |
---|
[29afc50] | 244 | .. math:: \text{PD} = \sigma = p / x_\text{med} |
---|
[990d8df] | 245 | |
---|
[29afc50] | 246 | The mean value of the distribution is given by $\bar x = \exp(\mu+ \sigma^2/2)$ |
---|
| 247 | and the peak value by $\max x = \exp(\mu - \sigma^2)$. |
---|
[990d8df] | 248 | |
---|
[f4ae8c4] | 249 | The variance (the square of the standard deviation) of the *lognormal* |
---|
| 250 | distribution is given by |
---|
[990d8df] | 251 | |
---|
[f4ae8c4] | 252 | .. math:: |
---|
[990d8df] | 253 | |
---|
[f4ae8c4] | 254 | \nu = [\exp({\sigma}^2) - 1] \exp({2\mu + \sigma^2}) |
---|
[990d8df] | 255 | |
---|
[f4ae8c4] | 256 | Note that larger values of PD might need a larger number of points |
---|
| 257 | and $N_\sigma$. |
---|
[ed5b109] | 258 | |
---|
[f4ae8c4] | 259 | .. figure:: pd_lognormal.jpg |
---|
[990d8df] | 260 | |
---|
[29afc50] | 261 | Lognormal distribution for PD=0.1. |
---|
[990d8df] | 262 | |
---|
[5026e05] | 263 | For further information on the Lognormal distribution see: |
---|
[ed5b109] | 264 | http://en.wikipedia.org/wiki/Log-normal_distribution and |
---|
[5026e05] | 265 | http://mathworld.wolfram.com/LogNormalDistribution.html |
---|
[990d8df] | 266 | |
---|
| 267 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 268 | |
---|
| 269 | Schulz Distribution |
---|
| 270 | ^^^^^^^^^^^^^^^^^^^ |
---|
| 271 | |
---|
[ed5b109] | 272 | The Schulz (sometimes written Schultz) distribution is similar to the |
---|
| 273 | Lognormal distribution, in that it is also skewed towards larger values of |
---|
| 274 | $x$, but which has computational advantages over the Lognormal distribution. |
---|
[5026e05] | 275 | |
---|
[990d8df] | 276 | The Schulz distribution is defined as |
---|
| 277 | |
---|
[f4ae8c4] | 278 | .. math:: |
---|
[990d8df] | 279 | |
---|
[f4ae8c4] | 280 | f(x) = \frac{1}{\text{Norm}} (z+1)^{z+1}(x/\bar x)^z |
---|
| 281 | \frac{\exp[-(z+1)x/\bar x]}{\bar x\Gamma(z+1)} |
---|
[990d8df] | 282 | |
---|
[f4ae8c4] | 283 | where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the |
---|
| 284 | distribution, *Norm* is a normalization factor which is determined |
---|
| 285 | during the numerical calculation, and $z$ is a measure of the width |
---|
| 286 | of the distribution such that |
---|
[990d8df] | 287 | |
---|
[f4ae8c4] | 288 | .. math:: z = (1-p^2) / p^2 |
---|
[990d8df] | 289 | |
---|
[f4ae8c4] | 290 | where $p$ is the polydispersity in sasmodels given by |
---|
[990d8df] | 291 | |
---|
[f4ae8c4] | 292 | .. math:: PD = p = \sigma / \bar x |
---|
[990d8df] | 293 | |
---|
[f4ae8c4] | 294 | and $\sigma$ is the RMS deviation from $\bar x$. |
---|
[ed5b109] | 295 | |
---|
[f4ae8c4] | 296 | Note that larger values of PD might need a larger number of points |
---|
| 297 | and $N_\sigma$. For example, for PD=0.7 with radius=60 |Ang|, at least |
---|
| 298 | Npts>=160 and Nsigmas>=15 are required. |
---|
[990d8df] | 299 | |
---|
[f4ae8c4] | 300 | .. figure:: pd_schulz.jpg |
---|
[990d8df] | 301 | |
---|
[f4ae8c4] | 302 | Schulz distribution. |
---|
[990d8df] | 303 | |
---|
| 304 | For further information on the Schulz distribution see: |
---|
[5026e05] | 305 | M Kotlarchyk & S-H Chen, *J Chem Phys*, (1983), 79, 2461 and |
---|
[ed5b109] | 306 | M Kotlarchyk, RB Stephens, and JS Huang, *J Phys Chem*, (1988), 92, 1533 |
---|
[990d8df] | 307 | |
---|
| 308 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 309 | |
---|
| 310 | Array Distribution |
---|
| 311 | ^^^^^^^^^^^^^^^^^^ |
---|
| 312 | |
---|
[a5a12ca] | 313 | This user-definable distribution should be given as a simple ASCII text |
---|
[990d8df] | 314 | file where the array is defined by two columns of numbers: $x$ and $f(x)$. |
---|
| 315 | The $f(x)$ will be normalized to 1 during the computation. |
---|
| 316 | |
---|
| 317 | Example of what an array distribution file should look like: |
---|
| 318 | |
---|
| 319 | ==== ===== |
---|
| 320 | 30 0.1 |
---|
| 321 | 32 0.3 |
---|
| 322 | 35 0.4 |
---|
| 323 | 36 0.5 |
---|
| 324 | 37 0.6 |
---|
| 325 | 39 0.7 |
---|
| 326 | 41 0.9 |
---|
| 327 | ==== ===== |
---|
| 328 | |
---|
| 329 | Only these array values are used computation, therefore the parameter value |
---|
| 330 | given for the model will have no affect, and will be ignored when computing |
---|
| 331 | the average. This means that any parameter with an array distribution will |
---|
[a5a12ca] | 332 | not be fitable. |
---|
| 333 | |
---|
| 334 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 335 | |
---|
[990d8df] | 336 | Note about DLS polydispersity |
---|
| 337 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 338 | |
---|
[97d172c] | 339 | Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and |
---|
| 340 | it should not be assumed that any of the following can be simply equated with |
---|
| 341 | the polydispersity *PD* parameter used in SasView. |
---|
| 342 | |
---|
[d089a00] | 343 | The dimensionless **Polydispersity Index (PI)** is a measure of the width of the |
---|
[97d172c] | 344 | distribution of autocorrelation function decay rates (*not* the distribution of |
---|
| 345 | particle sizes itself, though the two are inversely related) and is defined by |
---|
| 346 | ISO 22412:2017 as |
---|
[990d8df] | 347 | |
---|
[5026e05] | 348 | .. math:: |
---|
| 349 | |
---|
[97d172c] | 350 | PI = \mu_{2} / \bar \Gamma^2 |
---|
| 351 | |
---|
| 352 | where $\mu_\text{2}$ is the second cumulant, and $\bar \Gamma^2$ is the |
---|
| 353 | intensity-weighted average value, of the distribution of decay rates. |
---|
| 354 | |
---|
| 355 | *If the distribution of decay rates is Gaussian* then |
---|
| 356 | |
---|
| 357 | .. math:: |
---|
| 358 | |
---|
| 359 | PI = \sigma^2 / 2\bar \Gamma^2 |
---|
| 360 | |
---|
[d089a00] | 361 | where $\sigma$ is the standard deviation, allowing a **Relative Polydispersity (RP)** |
---|
[97d172c] | 362 | to be defined as |
---|
| 363 | |
---|
| 364 | .. math:: |
---|
| 365 | |
---|
[86bb5df] | 366 | RP = \sigma / \bar \Gamma = \sqrt{2 \cdot PI} |
---|
[97d172c] | 367 | |
---|
| 368 | PI values smaller than 0.05 indicate a highly monodisperse system. Values |
---|
| 369 | greater than 0.7 indicate significant polydispersity. |
---|
| 370 | |
---|
[d089a00] | 371 | The **size polydispersity P-parameter** is defined as the relative standard |
---|
[97d172c] | 372 | deviation coefficient of variation |
---|
| 373 | |
---|
| 374 | .. math:: |
---|
| 375 | |
---|
| 376 | P = \sqrt\nu / \bar R |
---|
| 377 | |
---|
| 378 | where $\nu$ is the variance of the distribution and $\bar R$ is the mean |
---|
| 379 | value of $R$. Here, the product $P \bar R$ is *equal* to the standard |
---|
| 380 | deviation of the Lognormal distribution. |
---|
[5026e05] | 381 | |
---|
[97d172c] | 382 | P values smaller than 0.13 indicate a monodisperse system. |
---|
[5026e05] | 383 | |
---|
[990d8df] | 384 | For more information see: |
---|
[d089a00] | 385 | |
---|
| 386 | `ISO 22412:2017, International Standards Organisation (2017) <https://www.iso.org/standard/65410.html>`_. |
---|
| 387 | |
---|
| 388 | `Polydispersity: What does it mean for DLS and Chromatography <http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography/>`_. |
---|
| 389 | |
---|
| 390 | `Dynamic Light Scattering: Common Terms Defined, Whitepaper WP111214. Malvern Instruments (2011) <http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf>`_. |
---|
| 391 | |
---|
| 392 | S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143. |
---|
| 393 | |
---|
[97d172c] | 394 | T Allen, in *Particle Size Measurement*, 4th Edition, Chapman & Hall, London (1990). |
---|
[990d8df] | 395 | |
---|
| 396 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 397 | |
---|
| 398 | *Document History* |
---|
| 399 | |
---|
| 400 | | 2015-05-01 Steve King |
---|
| 401 | | 2017-05-08 Paul Kienzle |
---|
[5026e05] | 402 | | 2018-03-20 Steve King |
---|
[29afc50] | 403 | | 2018-04-04 Steve King |
---|
[97d172c] | 404 | | 2018-08-09 Steve King |
---|