source: sasmodels/doc/guide/magnetism/magnetism.rst @ eb87965

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since eb87965 was 2c108a3, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

simplify magnetism code

  • Property mode set to 100644
File size: 2.9 KB
RevLine 
[9f60c06]1.. _magnetism:
2
3Polarisation/Magnetic Scattering
[990d8df]4================================
[9f60c06]5
[990d8df]6Models which define a scattering length density parameter can be evaluated
7 as magnetic models. In general, the scattering length density (SLD =
8 $\beta$) in each region where the SLD is uniform, is a combination of the
9 nuclear and magnetic SLDs and, for polarised neutrons, also depends on the
10 spin states of the neutrons.
[9f60c06]11
12For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$
[524e5c4]13perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic
[9f60c06]14scattering length.
15
16
17.. figure::
[0cd9158]18    mag_img/mag_vector.png
[9f60c06]19
20The magnetic scattering length density is then
21
22.. math::
23    \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot
24    \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp}
25
26where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the
27Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$
28is the Pauli spin.
29
30Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-)
31to the $x'$ axis, the possible spin states after the sample are then
32
[2c108a3]33Non spin-flip (+ +) and (- -)
[9f60c06]34
[2c108a3]35Spin-flip    (+ -) and (- +)
[9f60c06]36
37.. figure::
[0cd9158]38    mag_img/M_angles_pic.png
[9f60c06]39
40If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are
41$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the
42neutrons, the scattering length densities, including the nuclear scattering
[2c108a3]43length density $(\beta{_N})$ are
[9f60c06]44
45.. math::
46    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'}
[2c108a3]47    \text{ for non spin-flip states}
[9f60c06]48
49and
50
51.. math::
52    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'})
[2c108a3]53    \text{ for spin-flip states}
[9f60c06]54
55where
56
57.. math::
[2c108a3]58    M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\
59    M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\
60    M_{\perp z'} &= M_{0z} \\
61    M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\
62    M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi
[9f60c06]63
64Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components
65of the magnetization vector given in the laboratory xyz frame given by
66
67.. math::
[2c108a3]68    M_{0x} &= M_0\cos\theta_M\cos\phi_M \\
69    M_{0y} &= M_0\sin\theta_M \\
70    M_{0z} &= -M_0\cos\theta_M\sin\phi_M
[9f60c06]71
72and the magnetization angles $\theta_M$ and $\phi_M$ are defined in
73the figure above.
74
75The user input parameters are:
76
77===========   ================================================================
78 M0_sld        = $D_M M_0$
[1f058ea]79 Up_theta      = $\theta_\mathrm{up}$
[9f60c06]80 M_theta       = $\theta_M$
81 M_phi         = $\phi_M$
82 Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample
83 Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample
84===========   ================================================================
85
86.. note::
87    The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1.
88
[59485a4]89*Document History*
[990d8df]90
[59485a4]91| 2015-05-02 Steve King
[990d8df]92| 2017-05-08 Paul Kienzle
Note: See TracBrowser for help on using the repository browser.