source: sasmodels/doc/guide/magnetism/magnetism.rst @ eb77f9c

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since eb77f9c was 990d8df, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

move polydispersity and resolution docs into sasmodels; write installation instructions

  • Property mode set to 100644
File size: 2.9 KB
RevLine 
[9f60c06]1.. _magnetism:
2
3Polarisation/Magnetic Scattering
[990d8df]4================================
[9f60c06]5
[990d8df]6Models which define a scattering length density parameter can be evaluated
7 as magnetic models. In general, the scattering length density (SLD =
8 $\beta$) in each region where the SLD is uniform, is a combination of the
9 nuclear and magnetic SLDs and, for polarised neutrons, also depends on the
10 spin states of the neutrons.
[9f60c06]11
12For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$
[524e5c4]13perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic
[9f60c06]14scattering length.
15
16
17.. figure::
[5e1d6b0]18    mag_img/mag_vector.bmp
[9f60c06]19
20The magnetic scattering length density is then
21
22.. math::
23    \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot
24    \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp}
25
26where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the
27Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$
28is the Pauli spin.
29
30Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-)
31to the $x'$ axis, the possible spin states after the sample are then
32
33No spin-flips (+ +) and (- -)
34
35Spin-flips    (+ -) and (- +)
36
37.. figure::
[5e1d6b0]38    mag_img/M_angles_pic.bmp
[9f60c06]39
40If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are
41$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the
42neutrons, the scattering length densities, including the nuclear scattering
[30fab25]43length density ($\beta{_N}$) are
[9f60c06]44
45.. math::
46    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'}
47    \text{ when there are no spin-flips}
48
49and
50
51.. math::
52    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'})
53    \text{ when there are}
54
55where
56
57.. math::
58    M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\
59    M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\
60    M_{\perp z'} = M_{0z} \\
61    M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\
62    M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi
63
64Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components
65of the magnetization vector given in the laboratory xyz frame given by
66
67.. math::
68    M_{0x} = M_0\cos\theta_M\cos\phi_M \\
69    M_{0y} = M_0\sin\theta_M \\
70    M_{0z} = -M_0\cos\theta_M\sin\phi_M
71
72and the magnetization angles $\theta_M$ and $\phi_M$ are defined in
73the figure above.
74
75The user input parameters are:
76
77===========   ================================================================
78 M0_sld        = $D_M M_0$
[524e5c4]79 Up_theta      = $\theta_{up}$
[9f60c06]80 M_theta       = $\theta_M$
81 M_phi         = $\phi_M$
82 Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample
83 Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample
84===========   ================================================================
85
86.. note::
87    The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1.
88
89.. note::
90    This help document was last changed by Steve King, 02May2015
[990d8df]91
92* Document History *
93
94| 2017-05-08 Paul Kienzle
Note: See TracBrowser for help on using the repository browser.