[9f60c06] | 1 | .. _magnetism: |
---|
| 2 | |
---|
| 3 | Polarisation/Magnetic Scattering |
---|
[990d8df] | 4 | ================================ |
---|
[9f60c06] | 5 | |
---|
[990d8df] | 6 | Models which define a scattering length density parameter can be evaluated |
---|
[4f5afc9] | 7 | as magnetic models. In general, the scattering length density (SLD = |
---|
| 8 | $\beta$) in each region where the SLD is uniform, is a combination of the |
---|
| 9 | nuclear and magnetic SLDs and, for polarised neutrons, also depends on the |
---|
| 10 | spin states of the neutrons. |
---|
[9f60c06] | 11 | |
---|
| 12 | For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$ |
---|
[524e5c4] | 13 | perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic |
---|
[9f60c06] | 14 | scattering length. |
---|
| 15 | |
---|
| 16 | .. figure:: |
---|
[0cd9158] | 17 | mag_img/mag_vector.png |
---|
[9f60c06] | 18 | |
---|
| 19 | The magnetic scattering length density is then |
---|
| 20 | |
---|
| 21 | .. math:: |
---|
| 22 | \beta_M = \dfrac{\gamma r_0}{2\mu_B}\sigma \cdot |
---|
| 23 | \mathbf{M_\perp} = D_M\sigma \cdot \mathbf{M_\perp} |
---|
| 24 | |
---|
| 25 | where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the |
---|
| 26 | Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$ |
---|
| 27 | is the Pauli spin. |
---|
| 28 | |
---|
[4f5afc9] | 29 | Assuming that incident neutrons are polarized parallel $(+)$ and anti-parallel |
---|
| 30 | $(-)$ to the $x'$ axis, the possible spin states after the sample are then: |
---|
| 31 | |
---|
| 32 | * Non spin-flip $(+ +)$ and $(- -)$ |
---|
| 33 | |
---|
| 34 | * Spin-flip $(+ -)$ and $(- +)$ |
---|
[9f60c06] | 35 | |
---|
[4f5afc9] | 36 | Each measurement is an incoherent mixture of these spin states based on the |
---|
| 37 | fraction of $+$ neutrons before ($u_i$) and after ($u_f$) the sample, |
---|
| 38 | with weighting: |
---|
| 39 | |
---|
| 40 | .. math:: |
---|
[befe905] | 41 | -- &= (1-u_i)(1-u_f) \\ |
---|
| 42 | -+ &= (1-u_i)(u_f) \\ |
---|
| 43 | +- &= (u_i)(1-u_f) \\ |
---|
| 44 | ++ &= (u_i)(u_f) |
---|
[9f60c06] | 45 | |
---|
[4f5afc9] | 46 | Ideally the experiment would measure the pure spin states independently and |
---|
| 47 | perform a simultaneous analysis of the four states, tying all the model |
---|
| 48 | parameters together except $u_i$ and $u_f$. |
---|
[9f60c06] | 49 | |
---|
| 50 | .. figure:: |
---|
[0cd9158] | 51 | mag_img/M_angles_pic.png |
---|
[9f60c06] | 52 | |
---|
| 53 | If the angles of the $Q$ vector and the spin-axis $x'$ to the $x$ - axis are |
---|
| 54 | $\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the |
---|
| 55 | neutrons, the scattering length densities, including the nuclear scattering |
---|
[2c108a3] | 56 | length density $(\beta{_N})$ are |
---|
[9f60c06] | 57 | |
---|
| 58 | .. math:: |
---|
| 59 | \beta_{\pm\pm} = \beta_N \mp D_M M_{\perp x'} |
---|
[2c108a3] | 60 | \text{ for non spin-flip states} |
---|
[9f60c06] | 61 | |
---|
| 62 | and |
---|
| 63 | |
---|
| 64 | .. math:: |
---|
| 65 | \beta_{\pm\mp} = -D_M (M_{\perp y'} \pm iM_{\perp z'}) |
---|
[2c108a3] | 66 | \text{ for spin-flip states} |
---|
[9f60c06] | 67 | |
---|
| 68 | where |
---|
| 69 | |
---|
| 70 | .. math:: |
---|
[2c108a3] | 71 | M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ |
---|
| 72 | M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ |
---|
| 73 | M_{\perp z'} &= M_{0z} \\ |
---|
| 74 | M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ |
---|
| 75 | M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi |
---|
[9f60c06] | 76 | |
---|
| 77 | Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components |
---|
| 78 | of the magnetization vector given in the laboratory xyz frame given by |
---|
| 79 | |
---|
| 80 | .. math:: |
---|
[2c108a3] | 81 | M_{0x} &= M_0\cos\theta_M\cos\phi_M \\ |
---|
| 82 | M_{0y} &= M_0\sin\theta_M \\ |
---|
| 83 | M_{0z} &= -M_0\cos\theta_M\sin\phi_M |
---|
[9f60c06] | 84 | |
---|
| 85 | and the magnetization angles $\theta_M$ and $\phi_M$ are defined in |
---|
| 86 | the figure above. |
---|
| 87 | |
---|
| 88 | The user input parameters are: |
---|
| 89 | |
---|
| 90 | =========== ================================================================ |
---|
[4f5afc9] | 91 | M0:sld $D_M M_0$ |
---|
| 92 | mtheta:sld $\theta_M$ |
---|
| 93 | mphi:sld $\phi_M$ |
---|
| 94 | up:angle $\theta_\mathrm{up}$ |
---|
| 95 | up:frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample |
---|
| 96 | up:frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample |
---|
[9f60c06] | 97 | =========== ================================================================ |
---|
| 98 | |
---|
| 99 | .. note:: |
---|
[4f5afc9] | 100 | The values of the 'up:frac_i' and 'up:frac_f' must be in the range 0 to 1. |
---|
[9f60c06] | 101 | |
---|
[59485a4] | 102 | *Document History* |
---|
[990d8df] | 103 | |
---|
[59485a4] | 104 | | 2015-05-02 Steve King |
---|
[befe905] | 105 | | 2017-11-15 Paul Kienzle |
---|
| 106 | | 2018-06-02 Adam Washington |
---|