[77c91d0] | 1 | .. fitting_sq.rst |
---|
| 2 | |
---|
| 3 | .. Much of the following text was scraped from product.py |
---|
| 4 | |
---|
[bc69321] | 5 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[77c91d0] | 6 | |
---|
[e62c019] | 7 | .. _Product_Models: |
---|
[77c91d0] | 8 | |
---|
| 9 | Fitting Models with Structure Factors |
---|
| 10 | ------------------------------------- |
---|
| 11 | |
---|
| 12 | .. note:: |
---|
| 13 | |
---|
| 14 | This help document is under development |
---|
| 15 | |
---|
[bc69321] | 16 | .. figure:: p_and_s_buttons.png |
---|
| 17 | |
---|
[1423ddb] | 18 | **Product models**, or $P@S$ models for short, multiply the form factor |
---|
| 19 | $P(Q)$ by the structure factor $S(Q)$, modulated by the **effective radius** |
---|
| 20 | of the form factor. |
---|
[77c91d0] | 21 | |
---|
[1423ddb] | 22 | |
---|
| 23 | Scattering at vector $\mathbf Q$ for an individual particle with |
---|
| 24 | shape parameters $\mathbf\xi$ and contrast $\rho_c(\mathbf r, \mathbf\xi)$ |
---|
| 25 | is computed from the square of the amplitude, $F(\mathbf Q, \mathbf\xi)$, as |
---|
| 26 | |
---|
| 27 | .. math:: |
---|
| 28 | I(\mathbf Q) = F(\mathbf Q, \mathbf\xi) F^*(\mathbf Q, \mathbf\xi) |
---|
| 29 | \big/ V(\mathbf\xi) |
---|
| 30 | |
---|
| 31 | with particle volume $V(\mathbf \xi)$ and |
---|
| 32 | |
---|
| 33 | .. math:: |
---|
| 34 | F(\mathbf Q, \mathbf\xi) = \int_{\mathbb R^3} \rho_c(\mathbf r, \mathbf\xi) |
---|
| 35 | e^{i \mathbf Q \cdot \mathbf r} \,\mathrm d \mathbf r |
---|
| 36 | |
---|
| 37 | The 1-D scattering pattern for monodisperse particles uses the orientation |
---|
| 38 | average in spherical coordinates, |
---|
| 39 | |
---|
| 40 | .. math:: |
---|
| 41 | I(Q) = n \langle F F^*\rangle = \frac{n}{4\pi} |
---|
| 42 | \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} |
---|
| 43 | F F^* \sin(\theta) \,\mathrm d\phi \mathrm d\theta |
---|
| 44 | |
---|
| 45 | where $F(\mathbf Q,\mathbf\xi)$ uses |
---|
| 46 | $\mathbf Q = [Q \sin\theta\cos\phi, Q \sin\theta\sin\phi, Q \cos\theta]^T$. |
---|
| 47 | A $u$-substitution may be used, with $\alpha = \cos \theta$, |
---|
| 48 | $\surd(1 - \alpha^2) = \sin \theta$, and |
---|
| 49 | $\mathrm d\alpha = -\sin\theta\,\mathrm d\theta$. |
---|
| 50 | Here, |
---|
| 51 | |
---|
| 52 | .. math:: n = V_f/V(\mathbf\xi) |
---|
| 53 | |
---|
| 54 | is the number density of scatterers estimated from the volume fraction |
---|
| 55 | of particles in solution. In this formalism, each incoming |
---|
| 56 | wave interacts with exactly one particle before being scattered into the |
---|
| 57 | detector. All interference effects are within the particle itself. |
---|
| 58 | The detector accumulates counts in proportion to the relative probability |
---|
| 59 | at each pixel. The extension to heterogeneous systems is simply a matter of |
---|
| 60 | adding the scattering patterns in proportion to the number density of each |
---|
| 61 | particle. That is, given shape parameters $\mathbf\xi$ with probability |
---|
| 62 | $P_\mathbf{\xi}$, |
---|
| 63 | |
---|
| 64 | .. math:: |
---|
| 65 | |
---|
| 66 | I(Q) = \int_\Xi n(\mathbf\xi) \langle F F^* \rangle \,\mathrm d\xi |
---|
| 67 | = V_f\frac{\int_\Xi P_\mathbf{\xi} \langle F F^* \rangle |
---|
| 68 | \,\mathrm d\mathbf\xi}{\int_\Xi P_\mathbf\xi V(\mathbf\xi)\,\mathrm d\mathbf\xi} |
---|
| 69 | |
---|
| 70 | This approximation is valid in the dilute limit, where particles are |
---|
| 71 | sufficiently far apart that the interaction between them can be ignored. |
---|
| 72 | |
---|
| 73 | As concentration increases, a structure factor term $S(Q)$ can be included, |
---|
| 74 | giving the monodisperse approximation for the interaction between particles, |
---|
| 75 | with |
---|
| 76 | |
---|
| 77 | .. math:: I(Q) = n \langle F F^* \rangle S(Q) |
---|
| 78 | |
---|
| 79 | For particles without spherical symmetry, the decoupling approximation (DA) |
---|
| 80 | is more accurate, with |
---|
| 81 | |
---|
| 82 | .. math:: |
---|
| 83 | |
---|
| 84 | I(Q) = n [\langle F F^* \rangle |
---|
| 85 | + \langle F \rangle \langle F \rangle^* (S(Q) - 1)] |
---|
| 86 | |
---|
| 87 | Or equivalently, |
---|
| 88 | |
---|
| 89 | .. math:: I(Q) = P(Q)[1 + \beta\,(S(Q) - 1)] |
---|
| 90 | |
---|
| 91 | with form factor $P(Q) = n \langle F F^* \rangle$ and |
---|
| 92 | $\beta = \langle F \rangle \langle F \rangle^* \big/ \langle F F^* \rangle$. |
---|
| 93 | These approximations can be extended to heterogeneous systems using averages |
---|
| 94 | over size, $\langle \cdot \rangle_\mathbf\xi = \int_\Xi P_\mathbf\xi \langle\cdot\rangle\,\mathrm d\mathbf\xi \big/ \int_\Xi P_\mathbf\xi \,\mathrm d\mathbf\xi$ and setting |
---|
| 95 | $n = V_f\big/\langle V \rangle_\mathbf\xi$. |
---|
| 96 | Further improvements can be made using the local monodisperse |
---|
| 97 | approximation (LMA) or using partial structure factors, as described |
---|
| 98 | in \cite{bresler_sasfit:_2015}. |
---|
| 99 | |
---|
| 100 | Many parameters are common amongst $P@S$ models, and take on specific meanings: |
---|
[77c91d0] | 101 | |
---|
| 102 | * *scale*: |
---|
| 103 | |
---|
[1423ddb] | 104 | Overall model scale factor. |
---|
| 105 | |
---|
| 106 | To compute number density $n$ the volume fraction $V_f$ is needed. In |
---|
| 107 | most $P(Q)$ models $V_f$ is not defined and **scale** is used instead. |
---|
| 108 | Some $P(Q)$ models, such as *vesicle*, do define **volfraction** and so |
---|
| 109 | can leave **scale** at 1.0. |
---|
| 110 | |
---|
| 111 | The structure factor model $S(Q)$ has **volfraction**. This is also used |
---|
| 112 | as the volume fraction for the form factor model $P(Q)$, replacing the |
---|
| 113 | **volfraction** parameter if it exists in $P$. This means that |
---|
| 114 | $P@S$ models can leave **scale** at 1.0. |
---|
| 115 | |
---|
| 116 | If the volume fraction required for $S(Q)$ is *not* the volume fraction |
---|
| 117 | needed to compute the number density for $P(Q)$, then leave |
---|
| 118 | **volfraction** as the volume fraction for $S(Q)$ and use |
---|
| 119 | **scale** to define the volume fraction for $P(Q)$ as |
---|
| 120 | $V_f$ = **scale** $\cdot$ **volfraction**. This situation may |
---|
| 121 | occur in a mixed phase system where the effective volume |
---|
| 122 | fraction needed to compute the structure is much higher than the |
---|
| 123 | true volume fraction. |
---|
[77c91d0] | 124 | |
---|
| 125 | * *volfraction*: |
---|
| 126 | |
---|
[1423ddb] | 127 | The volume fraction of material. |
---|
[bc69321] | 128 | |
---|
[1423ddb] | 129 | For hollow shapes, **volfraction** still represents the volume fraction of |
---|
| 130 | material but the $S(Q)$ calculation needs the volume fraction *enclosed by* |
---|
| 131 | *the shape.* Thus the user-specified **volfraction** is scaled by the ratio |
---|
| 132 | form:shell computed from the average form volume and average shell volume |
---|
| 133 | returned from the $P(Q)$ calculation when calculating $S(Q)$. The original |
---|
| 134 | **volfraction** is divided by the shell volume to compute the number |
---|
| 135 | density $n$ used in $P@S$ to get the absolute scaling on the final $I(Q)$. |
---|
[77c91d0] | 136 | |
---|
| 137 | * *radius_effective*: |
---|
| 138 | |
---|
[1423ddb] | 139 | The radial distance determining the range of the $S(Q)$ interaction. |
---|
| 140 | |
---|
| 141 | This may be estimated from the "size" parameters $\mathbf \xi$ describing |
---|
| 142 | the form of the shape. For example, in a system containing freely-rotating |
---|
| 143 | cylinders, the volume of space each cylinder requires to tumble will be |
---|
| 144 | much larger than the volume of the cylinder itself. Thus the effective |
---|
| 145 | radius will be larger than either the radius or the half-length of the |
---|
| 146 | cylinder. It may be sensible to tie or constrain **radius_effective** |
---|
| 147 | to one or other of these "size" parameters. **radius_effective** may |
---|
| 148 | also be specified directly, independent of the estimate from $P(Q)$. |
---|
| 149 | |
---|
| 150 | If it is calculated by $P(Q)$, **radius_effective** will be the |
---|
| 151 | weighted average of the effective radii computed for the polydisperse |
---|
| 152 | shape parameters, and that average used to compute $S(Q)$. When |
---|
| 153 | specified directly, the value of **radius_effective** may be |
---|
| 154 | polydisperse, and $S(Q)$ will be averaged over a range of effective |
---|
| 155 | radii. Whether this makes any physical sense will depend on the system. |
---|
| 156 | |
---|
| 157 | * *radius_effective_mode*: |
---|
| 158 | |
---|
| 159 | Selects the **radius_effective** value to use. |
---|
| 160 | |
---|
| 161 | When **radius_effective_mode = 0** then the **radius_effective** |
---|
| 162 | parameter in the $P@S$ model is used. Otherwise |
---|
| 163 | **radius_effective_mode = k** is the index into the list of |
---|
| 164 | **radius_effective_modes** defined by the model indicating how the |
---|
| 165 | effective radius should be computed from the parameters of the shape. |
---|
| 166 | For example, the *ellipsoid* model defines the following:: |
---|
| 167 | |
---|
| 168 | 1 => average curvature |
---|
| 169 | 2 => equivalent volume sphere |
---|
| 170 | 3 => min radius |
---|
| 171 | 4 => max radius |
---|
| 172 | |
---|
| 173 | **radius_effective_mode** will only appear in the parameter table if |
---|
| 174 | the model defines the list of modes, otherwise it will be set permanently |
---|
| 175 | to 0 for user defined effective radius. |
---|
[77c91d0] | 176 | |
---|
| 177 | * *structure_factor_mode*: |
---|
| 178 | |
---|
[1423ddb] | 179 | The type of structure factor calculation to use. |
---|
| 180 | |
---|
| 181 | If the $P@S$ model supports the $\beta(Q)$ *decoupling correction* [1] |
---|
| 182 | then **structure_factor_mode** will appear in the parameter table after |
---|
| 183 | the $S(Q)$ parameters. |
---|
| 184 | |
---|
| 185 | If **structure_factor_mode = 0** then the |
---|
| 186 | *local monodisperse approximation* will be used, i.e.: |
---|
[bc69321] | 187 | |
---|
[1423ddb] | 188 | .. math:: |
---|
| 189 | I(Q) = \text{scale} \frac{V_f}{V} P(Q) S(Q) + \text{background} |
---|
[77c91d0] | 190 | |
---|
[1423ddb] | 191 | where $P(Q) = \langle F(Q)^2 \rangle$. |
---|
[77c91d0] | 192 | |
---|
[1423ddb] | 193 | If **structure_factor_mode = 1** then the $\beta(Q)$ correction will be |
---|
| 194 | used, i.e.: |
---|
[77c91d0] | 195 | |
---|
[1423ddb] | 196 | .. math:: |
---|
| 197 | I(Q) = \text{scale} \frac{V_f}{V} P(Q) [ 1 + \beta(Q) (S(Q) - 1) ] |
---|
| 198 | + \text{background} |
---|
[77c91d0] | 199 | |
---|
[1423ddb] | 200 | The $\beta(Q)$ decoupling approximation has the effect of damping the |
---|
| 201 | oscillations in the normal (local monodisperse) $S(Q)$. When $\beta(Q) = 1$ |
---|
| 202 | the local monodisperse approximation is recovered. |
---|
[77c91d0] | 203 | |
---|
[1423ddb] | 204 | More mode options may appear in future as more complicated operations are |
---|
| 205 | added. |
---|
[77c91d0] | 206 | |
---|
| 207 | References |
---|
| 208 | ^^^^^^^^^^ |
---|
| 209 | |
---|
| 210 | .. [#] Kotlarchyk, M.; Chen, S.-H. *J. Chem. Phys.*, 1983, 79, 2461 |
---|
| 211 | |
---|
[bc69321] | 212 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[77c91d0] | 213 | |
---|
| 214 | *Document History* |
---|
| 215 | |
---|
[bc69321] | 216 | | 2019-03-30 Paul Kienzle & Steve King |
---|