[2e66ef5] | 1 | .. py:currentmodule:: sasmodels |
---|
| 2 | |
---|
| 3 | *************************** |
---|
| 4 | Code Overview |
---|
| 5 | *************************** |
---|
| 6 | |
---|
| 7 | Computational kernels |
---|
| 8 | --------------------- |
---|
| 9 | |
---|
[870a2f4] | 10 | * :mod:`core` |
---|
| 11 | * :mod:`modelinfo` |
---|
| 12 | * :mod:`kernel` |
---|
| 13 | * :mod:`product` |
---|
| 14 | * :mod:`mixture` |
---|
| 15 | |
---|
[2e66ef5] | 16 | At the heart of *sasmodels* are the individual computational kernels. These |
---|
| 17 | functions take a particular $q$ value and a set of parameter values and |
---|
| 18 | return the expected scattering for that $q$. The instructions for writing |
---|
| 19 | a kernel are documented in :ref:`Writing_a_Plugin`. The source code for |
---|
[870a2f4] | 20 | the kernels is stored in :mod:`models`. |
---|
[2e66ef5] | 21 | |
---|
[870a2f4] | 22 | The primary interface to the models is through :mod:`core`, which |
---|
[2e66ef5] | 23 | provides functions for listing available models, loading the model definition |
---|
[870a2f4] | 24 | and compiling the model. Use :func:`core.load_model` to load in |
---|
| 25 | a model definition and compile it. This makes use of |
---|
| 26 | :func:`core.load_model_info` to load the model definition and |
---|
| 27 | :func:`core.build_model` to turn it into a computational kernel model |
---|
| 28 | :class:`kernel.KernelModel`. |
---|
| 29 | |
---|
| 30 | The :class:`modelinfo.ModelInfo` class defines the properties |
---|
| 31 | of the model including the available model parameters |
---|
| 32 | :class:`modelinfo.ParameterTable` with individual parameter attributes |
---|
| 33 | such as units and hard limits defined in :class:`modelinfo.Parameter`. |
---|
| 34 | |
---|
| 35 | The :class:`product.ProductModel` and :class:`mixture.MixtureModel` classes |
---|
| 36 | are derived models, created automatically for models with names like |
---|
| 37 | "hardsphere*sphere" and "cylinder+sphere". |
---|
| 38 | |
---|
| 39 | Data loaders |
---|
| 40 | ------------ |
---|
| 41 | |
---|
| 42 | * :mod:`data` |
---|
| 43 | |
---|
| 44 | In order to test models a minimal set of data management routines is |
---|
| 45 | provided in :mod:`data`. In particular, it provides mock :class:`data.Data1D` |
---|
| 46 | and :class:`data.Data2D` classes which mimic those classes in *SasView*. |
---|
| 47 | The functions :func:`data.empty_data1D` and :func:`data.empty_data2D` |
---|
| 48 | are handy for creating containers with a particular set of $q$, $\Delta q$ |
---|
| 49 | points which can later be evaluated, and :func:`data.plot_theory` to show |
---|
| 50 | the result. If *SasView* is available on the path then :func:`data.load_data` |
---|
| 51 | can be used to load any data type defined in *SasView*. The function |
---|
| 52 | :func:`data.plot_data` can plot that data alone without the theory value. |
---|
| 53 | |
---|
| 54 | Kernel execution |
---|
| 55 | ---------------- |
---|
| 56 | |
---|
| 57 | * :mod:`resolution` |
---|
| 58 | * :mod:`resolution2d` |
---|
| 59 | * :mod:`sesans` |
---|
| 60 | * :mod:`weights` |
---|
| 61 | * :mod:`details` |
---|
| 62 | * :mod:`direct_model` |
---|
| 63 | * :mod:`bumps_model` |
---|
| 64 | * :mod:`sasview_model` |
---|
| 65 | |
---|
| 66 | To execute a computational kernel at a particular set of $q$ values, the |
---|
| 67 | use :meth:`kernel.KernelModel.make_kernel`, which returns a callable |
---|
| 68 | :class:`kernel.Kernel` for that $q$ vector (or a pair of $q_x$, $q_y$ |
---|
| 69 | for 2-D datasets). |
---|
| 70 | |
---|
| 71 | The calculated $q$ values should include the measured |
---|
| 72 | data points as well as additional $q$ values required to properly compute the |
---|
| 73 | $q$ resolution function. The *Resolution* subclasses in :mod:`resolution` |
---|
| 74 | define the *q_calc* attribute for this purpose. These are |
---|
| 75 | :class:`resolution.Perfect1D` for perfect resolution, |
---|
| 76 | :class:`resolution.Pinhole1D` for the usual SANS pinhole aperture, |
---|
| 77 | :class:`resolution.Slit1D` for the usual USANS slit aperture and |
---|
| 78 | :class:`resolution2d.Pinhole2D` for 2-D pinhole data. |
---|
| 79 | In addition, :class:`resolution2d.Slit2D` defines 1-D slit smeared data |
---|
| 80 | for oriented samples, which require calculation at particular $q_x$ and |
---|
| 81 | $q_y$ values instead of $|q|$ as is the case for orientationally averaged |
---|
| 82 | USANS. The :class:`sesans.SesansTransform` class acts like a 1-D resolution, |
---|
| 83 | having a *q_calc* attribute that defines the calculated $q$ values for |
---|
| 84 | the SANS models that get converted to spin-echo values by the |
---|
| 85 | :meth:`sesnas.SesansTransform.apply` method. |
---|
| 86 | |
---|
| 87 | Polydispersity is defined by :class:`weights.Dispersion` classes, |
---|
| 88 | :class:`weights.RectangleDispersion`, :class:`weights.ArrayDispersion`, |
---|
| 89 | :class:`weights.LogNormalDispersion`, :class:`weights.GaussianDispersion`, |
---|
| 90 | :class:`weights.SchulzDispersion`. The :func:`weights.get_weights` |
---|
| 91 | function creates a dispersion object of the class matching |
---|
| 92 | :attr:`weights.Dispersion.type`, and calls it with the current value |
---|
| 93 | of the parameter. This returns a vector of values and weights for a |
---|
| 94 | weighted average polydispersity. |
---|
| 95 | |
---|
| 96 | In order to call the :class:`kernel.Kernel`, the values and weights for |
---|
| 97 | all parameters must be composed into a :class:`details.CallDetails` object. |
---|
| 98 | This is a compact vector representation of the entire polydispersity |
---|
| 99 | loop that can be passed easily to the kernel. Additionally, the magnetic |
---|
| 100 | parameters must be converted from polar to cartesian coordinates. This |
---|
| 101 | work is done by the :func:`details.make_kernel_args` function, which returns |
---|
| 102 | values that can be sent directly to the kernel. It uses |
---|
| 103 | :func:`details.make_details` to set the details object and |
---|
| 104 | :func:`details.convert_magnetism` for the coordinate transform. |
---|
| 105 | |
---|
| 106 | In the end, making a simple theory function evaluation requires a lot of |
---|
| 107 | setup. To make calling them a little easier, the *DirectModel* and |
---|
| 108 | *BumpsModel* interfaces are provided. See :ref:`Scripting_Interface` |
---|
| 109 | for an example. |
---|
| 110 | |
---|
| 111 | The :class:`direct_model.DirectModel` interface accepts a data object |
---|
| 112 | and a kernel model. Within the class, |
---|
| 113 | the :meth:`direct_model.DataMixin._interpret_data` method is called to |
---|
| 114 | query the data and set the resolution. |
---|
| 115 | The :meth:`direct_model.DataMixin._calc_theory` takes a set of parameter |
---|
| 116 | values, builds the kernel arguments, calls the kernel, and applies the |
---|
| 117 | resolution function, returning the predicted value for the data $q$ values. |
---|
| 118 | The :class:`bumps_model.Experiment` class is like the DirectModel class, |
---|
| 119 | but it defines a Fitness class that can be handed directly to the |
---|
| 120 | bumps optimization and uncertainty analysis program. |
---|
| 121 | |
---|
| 122 | The :class:`sasview_model.SasviewModel` class defines a SasView 4.x |
---|
| 123 | compatible interface to the sasmodels definitions, allowing sasmodels |
---|
| 124 | to be used directly from SasView. Over time the SasView shim should |
---|
| 125 | disappear as SasView access the :class:`modelinfo.ModelInfo` and |
---|
| 126 | computational kernels directly. |
---|
| 127 | |
---|
| 128 | Kernel execution |
---|
| 129 | ---------------- |
---|
| 130 | |
---|
| 131 | * :mod:`kernelcl` |
---|
| 132 | * :mod:`kerneldll` |
---|
| 133 | * :mod:`kernelpy` |
---|
| 134 | * :mod:`generate` |
---|
[2e66ef5] | 135 | |
---|
| 136 | |
---|
| 137 | The kernel functions for the most part do not define polydispersity, |
---|
[870a2f4] | 138 | resolution or magnetism directly. Instead sasmodels automatically |
---|
| 139 | applies these, calling the computation kernel as needed. |
---|
| 140 | |
---|
| 141 | The outermost loop is the resolution calculation. For the 1-D case |
---|
| 142 | this computes a single vector of $I(q)$ values and applies the convolution |
---|
| 143 | to the resulting set. Since the same $I(q)$ vector is used to compute the |
---|
| 144 | convolution at each point, it can be precomputed before the convolution, |
---|
| 145 | and so the convolution is reasonably efficient. The 2-D case is not |
---|
| 146 | that efficient, and instead recomputes the entire shifted/scaled set |
---|
| 147 | of $q_x$, $q_y$ values many times, or very many times depending on the |
---|
| 148 | accuracy requested. |
---|
| 149 | |
---|
| 150 | Polydispersity is handled as a mesh over the polydisperse parameters. |
---|
| 151 | This is the next level of the loop. For C kernels run in a DLL or |
---|
| 152 | using OpenCL, the polydisperisty loop is generated separately for each |
---|
| 153 | model as C code. Inside the polydispersity loop there is a loop over |
---|
| 154 | the magnetic cross sections for magnetic models, updating the SLD |
---|
| 155 | parameters with the effective magnetic SLD for that particular $q$ |
---|
| 156 | value. For OpenCL, each $q$ value loops over the |
---|
| 157 | polydispersity mesh on a separate processor. For DLL, the outer loop |
---|
| 158 | cycles through polydispersity, and the inner loop distributes q values |
---|
| 159 | amongst the processors. Like the DLL, the Python kernel execution |
---|
| 160 | cycles over the polydisperse parameters and the magnetic cross sections, |
---|
| 161 | calling the computation kernel with a vector of $q$ values. Assuming |
---|
| 162 | the kernel code accepts vectors, this can be fast enough (though it is |
---|
| 163 | painfully slow if not vectorized). |
---|
| 164 | |
---|
| 165 | Further details are provided in the next section, |
---|
| 166 | :ref:`Calculator_Interface` |
---|
| 167 | |
---|
[eda8b30] | 168 | .. _orientation_developer: |
---|
| 169 | |
---|
[da5536f] | 170 | Orientation and Numerical Integration |
---|
| 171 | ------------------------------------- |
---|
| 172 | |
---|
[e964ab1] | 173 | For 2d data from oriented anisotropic particles, the mean particle |
---|
| 174 | orientation is defined by angles $\theta$, $\phi$ and $\Psi$, which are not |
---|
| 175 | in general the same as similarly named angles in many form factors. The |
---|
| 176 | wikipedia page on Euler angles (https://en.wikipedia.org/wiki/Euler_angles) |
---|
| 177 | lists the different conventions available. To quote: "Different authors may |
---|
| 178 | use different sets of rotation axes to define Euler angles, or different |
---|
| 179 | names for the same angles. Therefore, any discussion employing Euler angles |
---|
[da5536f] | 180 | should always be preceded by their definition." |
---|
| 181 | |
---|
[3d40839] | 182 | We are using the $z$-$y$-$z$ convention with extrinsic rotations |
---|
| 183 | $\Psi$-$\theta$-$\phi$ for the particle orientation and $x$-$y$-$z$ |
---|
| 184 | convention with extrinsic rotations $\Psi$-$\theta$-$\phi$ for jitter, with |
---|
| 185 | jitter applied before particle orientation. |
---|
[e964ab1] | 186 | |
---|
| 187 | For numerical integration within form factors etc. sasmodels is mostly using |
---|
| 188 | Gaussian quadrature with 20, 76 or 150 points depending on the model. It also |
---|
| 189 | makes use of symmetries such as calculating only over one quadrant rather |
---|
| 190 | than the whole sphere. There is often a U-substitution replacing $\theta$ |
---|
| 191 | with $cos(\theta)$ which changes the limits of integration from 0 to $\pi/2$ |
---|
| 192 | to 0 to 1 and also conveniently absorbs the $sin(\theta)$ scale factor in the |
---|
[3d40839] | 193 | integration. This can cause confusion if checking equations to include in a |
---|
| 194 | paper or thesis! Most models use the same core kernel code expressed in terms |
---|
| 195 | of the rotated view ($q_a$, $q_b$, $q_c$) for both the 1D and the 2D models, |
---|
| 196 | but there are also historical quirks such as the parallelepiped model, which |
---|
| 197 | has a useless transformation representing $j_0(a q_a)$ as $j_0(b q_a a/b)$. |
---|
[da5536f] | 198 | |
---|
[3d40839] | 199 | Useful testing routines include: |
---|
[da5536f] | 200 | |
---|
[e964ab1] | 201 | :mod:`asymint` a direct implementation of the surface integral for certain |
---|
| 202 | models to get a more trusted value for the 1D integral using a |
---|
| 203 | reimplementation of the 2D kernel in python and mpmath (which computes math |
---|
| 204 | functions to arbitrary precision). It uses $\theta$ ranging from 0 to $\pi$ |
---|
| 205 | and $\phi$ ranging from 0 to $2\pi$. It perhaps would benefit from including |
---|
[3d40839] | 206 | the U-substitution for $\theta$. |
---|
[e964ab1] | 207 | |
---|
| 208 | :mod:`check1d` uses sasmodels 1D integration and compares that with a |
---|
| 209 | rectangle distribution in $\theta$ and $\phi$, with $\theta$ limits set to |
---|
[3d40839] | 210 | $\pm 90/\sqrt(3)$ and $\phi$ limits set to $\pm 180/\sqrt(3)$ [The rectangle |
---|
[e964ab1] | 211 | weight function uses the fact that the distribution width column is labelled |
---|
[3d40839] | 212 | sigma to decide that the 1-$\sigma$ width of a rectangular distribution needs to |
---|
[e964ab1] | 213 | be multiplied by $\sqrt(3)$ to get the corresponding gaussian equivalent, or |
---|
| 214 | similar reasoning.] This should rotate the sample through the entire |
---|
[3d40839] | 215 | $\theta$-$\phi$ surface according to the pattern that you see in jitter.py when |
---|
[e964ab1] | 216 | you modify it to use 'rectangle' rather than 'gaussian' for its distribution |
---|
[3d40839] | 217 | without changing the viewing angle. In order to match the 1-D pattern for |
---|
| 218 | an arbitrary viewing angle on triaxial shapes, we need to integrate |
---|
| 219 | over $\theta$, $\phi$ and $\Psi$. |
---|
| 220 | |
---|
| 221 | When computing the dispersity integral, weights are scaled by |
---|
| 222 | $|\cos(\delta \theta)|$ to account for the points in $\phi$ getting closer |
---|
| 223 | together as $\delta \theta$ increases. |
---|
| 224 | [This will probably change so that instead of adjusting the weights, we will |
---|
| 225 | adjust $\delta\theta$-$\delta\phi$ mesh so that the point density in |
---|
| 226 | $\delta\phi$ is lower at larger $\delta\theta$. The flag USE_SCALED_PHI in |
---|
| 227 | *kernel_iq.c* selects an alternative algorithm.] |
---|
| 228 | |
---|
| 229 | The integrated dispersion is computed at a set of $(qx, qy)$ points $(q |
---|
| 230 | \cos(\alpha), q \sin(\alpha))$ at some angle $\alpha$ (currently angle=0) for |
---|
| 231 | each $q$ used in the 1-D integration. The individual $q$ points should be |
---|
| 232 | equivalent to asymint rect-n when the viewing angle is set to |
---|
| 233 | $(\theta,\phi,\Psi) = (90, 0, 0)$. Such tests can help to validate that 2d |
---|
| 234 | models are consistent with 1d models. |
---|
| 235 | |
---|
| 236 | :mod:`sascomp -sphere=n` uses the same rectangular distribution as check1d to |
---|
| 237 | compute the pattern of the $q_x$-$q_y$ grid. |
---|
[e964ab1] | 238 | |
---|
| 239 | The :mod:`sascomp` utility can be used for 2d as well as 1d calculations to |
---|
| 240 | compare results for two sets of parameters or processor types, for example |
---|
[da5536f] | 241 | these two oriented cylinders here should be equivalent. |
---|
| 242 | |
---|
| 243 | :mod:`\./sascomp -2d cylinder theta=0 phi=0,90 theta_pd_type=rectangle phi_pd_type=rectangle phi_pd=10,1 theta_pd=1,10 length=500 radius=10` |
---|
| 244 | |
---|
[870a2f4] | 245 | |
---|
| 246 | Testing |
---|
| 247 | ------- |
---|
| 248 | |
---|
| 249 | * :mod:`model_test` |
---|
| 250 | * :mod:`compare` |
---|
| 251 | * :mod:`compare_many` |
---|
| 252 | * :mod:`rst2html` |
---|
| 253 | * :mod:`list_pars` |
---|
| 254 | |
---|
| 255 | Individual models should all have test values to make sure that the |
---|
| 256 | evaluation is correct. This is particularly important in the context |
---|
| 257 | of OpenCL since sasmodels doesn't control the compiler or the hardware, |
---|
| 258 | and since GPUs are notorious for preferring speed over precision. The |
---|
| 259 | tests can be run as a group using :mod:`model_test` as main:: |
---|
| 260 | |
---|
| 261 | $ python -m sasmodels.model_test all |
---|
| 262 | |
---|
| 263 | Individual models can be listed instead of *all*, which is convenient when |
---|
| 264 | adding new models. |
---|
| 265 | |
---|
| 266 | The :mod:`compare` module, usually invoked using *./sascomp* provides a |
---|
| 267 | rich interface for exploring model accuracy, execution speed and parameter |
---|
| 268 | ranges. It also allows different models to be compared. |
---|
| 269 | The :mod:`compare_many` module does batch comparisons, keeping a list of |
---|
| 270 | the particular random seeds which lead to large differences in output |
---|
| 271 | between different computing platforms. |
---|
| 272 | |
---|
| 273 | The :mod:`rst2html` module provides tools for converting model docs to |
---|
| 274 | html and viewing the html. This is used by :mod:`compare` to display |
---|
| 275 | the model description, such as:: |
---|
| 276 | |
---|
| 277 | $ ./sascomp -html sphere |
---|
| 278 | |
---|
| 279 | This makes debugging the latex much faster, though this may require |
---|
| 280 | Qt in order for mathjax to work correctly. |
---|
| 281 | |
---|
| 282 | When run as main, it can display arbitrary ReStructuredText files. E.g., |
---|
| 283 | |
---|
| 284 | :: |
---|
| 285 | |
---|
| 286 | $ python -m sasmodels.rst2html doc/developer/overview.rst |
---|
| 287 | |
---|
| 288 | This is handy for sorting out rst and latex syntax. With some work |
---|
| 289 | the results could be improved so that it recognizes sphinx roles |
---|
| 290 | such as *mod*, *class* and *func*, and so that it uses the style sheets |
---|
| 291 | from the sasmodels docs. |
---|
| 292 | |
---|
| 293 | The :mod:`list_pars` module lists all instances of parameters across |
---|
| 294 | all models. This helps to make sure that similar parameters have |
---|
| 295 | similar names across the different models. With the verbose flag, |
---|
| 296 | the particular models which use each named parameter are listed. |
---|
| 297 | |
---|
| 298 | |
---|
| 299 | Model conversion |
---|
| 300 | ---------------- |
---|
| 301 | |
---|
| 302 | * :mod:`convert` |
---|
| 303 | * :mod:`conversion_table` |
---|
| 304 | |
---|
| 305 | Model definitions are not static. As needs change or problems are found, |
---|
| 306 | models may be updated with new model names or may be reparameterized |
---|
| 307 | with new parameter definitions. For example, in translating the |
---|
| 308 | Teubner-Strey model from SasView 3.x to sasmodels, the definition |
---|
| 309 | in terms of *drho*, *k*, *c1*, *c2*, *a2* and prefactor was replaced |
---|
| 310 | by the defintion in terms of *volfraction_a*, *xi*, *d*, *sld_a* and |
---|
| 311 | *sld_b*. Within :mod:`convert`, the *_hand_convert_3_1_2_to_4_1* |
---|
| 312 | function must be called when loading a 3.x model definition to update it to |
---|
| 313 | 4.1, and then the model should be further updated to 4.2, 5.0, and so on. |
---|
| 314 | The :func:`convert.convert_model` function does this, using the conversion |
---|
| 315 | table in :mod:`conversion_table` (which handled the major renaming from |
---|
| 316 | SasView 3.x to sasmodels), and using the internal *_hand_convert* function |
---|
| 317 | for the more complicated cases. |
---|
| 318 | |
---|
| 319 | Other |
---|
| 320 | ----- |
---|
| 321 | |
---|
| 322 | * :mod:`exception` |
---|
| 323 | * :mod:`alignment` |
---|
| 324 | |
---|
| 325 | The :func:`exception.annotate_exception` function annotates the current |
---|
| 326 | exception with a context string, such as "while opening myfile.dat" without |
---|
| 327 | adjusting the traceback. |
---|
| 328 | |
---|
| 329 | The :mod:`alignment` module is unused. |
---|