source: sasmodels/doc/developer/calculator.rst @ d5014e4

Last change on this file since d5014e4 was 2c108a3, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

simplify magnetism code

  • Property mode set to 100644
File size: 13.2 KB
RevLine 
[e822c97]1.. currentmodule:: sasmodels
2
[870a2f4]3.. _Calculator_Interface:
4
[d5ac45f]5Calculator Interface
6====================
7
[e822c97]8This document describes the layer between the form factor kernels and the
[9ee2756]9model calculator which implements the dispersity and magnetic SLD
[e822c97]10calculations.  There are three separate implementations of this layer,
[2e66ef5]11:mod:`kernelcl` for OpenCL, which operates on a single Q value at a time,
12:mod:`kerneldll` for the DLL, which loops over a vector of Q values, and
13:mod:`kernelpy` for python models which operates on vector Q values.
[e822c97]14
15Each implementation provides three different calls *Iq*, *Iqxy* and *Imagnetic*
[9ee2756]16for 1-D, 2-D and 2-D magnetic kernels respectively. The C code is defined
17in *kernel_iq.c*, with the minor differences between OpenCL and DLL handled
18by #ifdef statements.
[e822c97]19
[9ee2756]20The kernel call looks as follows::
[e822c97]21
22  kernel void KERNEL_NAME(
23      int nq,                  // Number of q values in the q vector
[9ee2756]24      int pd_start,            // Starting position in the dispersity loop
25      int pd_stop,             // Ending position in the dispersity loop
26      ProblemDetails *details, // dispersity info
[e822c97]27      double *values,          // Value and weights vector
28      double *q,               // q or (qx,qy) vector
29      double *result,          // returned I(q), with result[nq] = pd_weight
[9ee2756]30      double cutoff)           // dispersity weight cutoff
[e822c97]31
32The details for OpenCL and the python loop are slightly different, but these
33data structures are common.
34
35*nq* indicates the number of q values that will be calculated.
36
[9ee2756]37The *pd_start* and *pd_stop* parameters set the range of the dispersity
38loop to compute for the current kernel call.   Give a dispersity
[e822c97]39calculation with 30 weights for length and 30 weights for radius for example,
40there are a total of 900 calls to the form factor required to compute the
41kernel.  These might be done in chunks of 100, so the first call would start
42at zero and stop after 100 iterations.  The second call would then have to set
43the length index to 3 and the radius index to 10 for a position of 3*30+10=100,
44and could then proceed to position 200.  This allows us to interrupt the
[9ee2756]45calculation in the middle of a long dispersity loop without having to
[e822c97]46do special tricks with the C code.  More importantly, it stops the OpenCL
47kernel in a reasonable time; because the GPU is used by the operating
48system to show its windows, if a GPU kernel runs too long then it will be
49automatically killed and no results will be returned to the caller.
50
51The *ProblemDetails* structure is a direct map of the
[9ee2756]52:class:`details.CallDetails` buffer.  This indicates which parameters have
53dispersity, and where in the values vector the values and weights can be
54found.  For each parameter with dispersity there is a parameter id, the length
55of the dispersity loop for that parameter, the offset of the parameter
[e822c97]56values in the pd value and pd weight vectors and the 'stride' from one index
57to the next, which is used to translate between the position in the
[9ee2756]58dispersity loop and the particular parameter indices.  The *num_eval*
59field is the total size of the dispersity loop.  *num_weights* is the
[e822c97]60number of elements in the pd value and pd weight vectors.  *num_active* is
[9ee2756]61the number of non-trivial pd loops (parameters with dispersity should be ordered
62by decreasing pd vector length, with a length of 1 meaning no dispersity).
[e822c97]63Oriented objects in 2-D need a cos(theta) spherical correction on the angular
64variation in order to preserve the 'surface area' of the weight distribution.
65*theta_par* is the id of the polar coordinate parameter if there is one.
66
67
68The *values* vector consists of the fixed values for the model plus pd value
69and pd weight vectors.  There are *NUM_VALUES* fixed values for the model,
70which includes the initial two slots for scale and background, the NUM_PARS
71values for the kernel parameters, three slots for the applied magnetism, and
72three slots for each of the SLD parameters for the sample magnetiziation
73*(Mx, My, Mz)*.  Sample magnetization is translated from *(M, theta, phi)*
74to *(Mx, My, Mz)* before the kernel is called.   After the fixed values comes
[9ee2756]75the pd value vector, with the dispersity values for each parameter
[e822c97]76stacked one after the other.  The order isn't important since the location
77for each parameter is stored in the *pd_offset* field of the *ProblemDetails*
78structure, but the values do need to be contiguous.  After *num_weights*
79values, the pd weight vector is stored, with the same configuration as the
80pd value vector.  Note that the pd vectors can contain values that are not
[9ee2756]81in the dispersity loop; this is used by :class:`mixture.MixtureKernel`
[e822c97]82to make it easier to call the various component kernels.
83
84The *q* vector contains one value for each q for *Iq* kernels, or a pair
85of *(qx,qy)* values for each q for *Iqxy* and *Imagnetic* kernels.  OpenCL
86pads all vectors to 32 value boundaries just to be safe, including the
87*values* vector and the the *results* vector.
88
89The *results* vector contains one slot for each of the *nq* values, plus
[9ee2756]90one extra slot at the end for the weight normalization accumulated across
91all points in the dispersity mesh.  This is required when the dispersity
92loop is broken across several kernel calls.
[e822c97]93
94*cutoff* is a importance cutoff so that points which contribute negligibly
95to the total scattering can be skipped without calculating them.
96
97:func:`generate.make_source` defines the following C macros:
[d5ac45f]98
99- USE_OPENCL is defined if running in opencl
[9ee2756]100- MAX_PD is the maximum depth of the dispersity loop [model specific]
[e822c97]101- NUM_PARS is the number of parameter values in the kernel.  This may be
102  more than the number of parameters if some of the parameters are vector
103  values.
104- NUM_VALUES is the number of fixed values, which defines the offset in the
[9ee2756]105  value list to the dispersity value and weight vectors.
[e822c97]106- NUM_MAGNETIC is the number of magnetic SLDs
107- MAGNETIC_PARS is a comma separated list of the magnetic SLDs, indicating
108  their locations in the values vector.
109- KERNEL_NAME is the name of the function being declared
110- PARAMETER_TABLE is the declaration of the parameters to the kernel:
[d5ac45f]111
[e822c97]112    Cylinder::
[d5ac45f]113
114        #define PARAMETER_TABLE \
115        double length; \
116        double radius; \
117        double sld; \
[e822c97]118        double sld_solvent;
[d5ac45f]119
120    Note: scale and background are never included
121
[e822c97]122    Multi-shell cylinder (10 shell max)::
[d5ac45f]123
124        #define PARAMETER_TABLE \
125        double num_shells; \
126        double length; \
127        double radius[10]; \
128        double sld[10]; \
[e822c97]129        double sld_solvent;
[d5ac45f]130
[e822c97]131- CALL_IQ(q, i, var) is the declaration of a call to the kernel:
[d5ac45f]132
[e822c97]133    Cylinder::
[d5ac45f]134
[03cac08]135        #define CALL_IQ(q, i, var) Iq(q[i], \
[d5ac45f]136        var.length, \
137        var.radius, \
138        var.sld, \
139        var.sld_solvent)
140
[e822c97]141    Multi-shell cylinder::
[d5ac45f]142
[03cac08]143        #define CALL_IQ(q, i, var) Iq(q[i], \
[d5ac45f]144        var.num_shells, \
145        var.length, \
146        var.radius, \
147        var.sld, \
148        var.sld_solvent)
149
[e822c97]150    Cylinder2D::
[03cac08]151
[9ee2756]152        #define CALL_IQ(q, i, var) Iqxy(qa, qc, \
[03cac08]153        var.length, \
154        var.radius, \
155        var.sld, \
[9ee2756]156        var.sld_solvent)
[03cac08]157
[d5ac45f]158- CALL_VOLUME(var) is similar, but for calling the form volume::
159
160        #define CALL_VOLUME(var) \
161        form_volume(var.length, var.radius)
162
[e822c97]163There is an additional macro that can be defined within the model.c file:
[d5ac45f]164
[e822c97]165- INVALID(var) is a test for model parameters in the correct range:
166
167    Cylinder::
[d5ac45f]168
169        #define INVALID(var) 0
170
[e822c97]171    BarBell::
[d5ac45f]172
[6fd8de0]173        #define INVALID(var) (var.bell_radius < var.radius)
[d5ac45f]174
[e822c97]175    Model with complicated constraints::
[d5ac45f]176
177        inline bool constrained(p1, p2, p3) { return expression; }
178        #define INVALID(var) constrained(var.p1, var.p2, var.p3)
179
[9ee2756]180Our design supports a limited number of dispersity loops, wherein
181we need to cycle through the values of the dispersity, calculate
[d5ac45f]182the I(q, p) for each combination of parameters, and perform a normalized
183weighted sum across all the weights.  Parameters may be passed to the
[9ee2756]184underlying calculation engine as scalars or vectors, but the dispersity
[d5ac45f]185calculator treats the parameter set as one long vector.
186
[9ee2756]187Let's assume we have 8 parameters in the model, two of which allow dispersity.
188Since this is a 1-D model the orientation parameters won't be used::
[d5ac45f]189
190    0: scale        {scl = constant}
191    1: background   {bkg = constant}
[e822c97]192    2: radius       {r = vector of 10pts}
193    3: length       {l = vector of 30pts}
[9ee2756]194    4: sld          {s1 = constant/(radius**2*length)}
[6fd8de0]195    5: sld_solvent  {s2 = constant}
[e822c97]196    6: theta        {not used}
197    7: phi          {not used}
198
199This generates the following call to the kernel.  Note that parameters 4 and
[9ee2756]2005 are treated as having dispersity even though they don't --- this is because
[e822c97]201it is harmless to do so and simplifies the looping code::
202
203    MAX_PD = 4
204    NUM_PARS = 6          // kernel parameters only
205    NUM_VALUES = 17       // all values, including scale and background
206    NUM_MAGNETIC = 2      // two parameters might be magnetic
207    MAGNETIC_PARS = 4, 5  // they are sld and sld_solvent
208
209    details {
210        pd_par = {3, 2, 4, 5}         // parameters *radius* and *length* vary
211        pd_length = {30, 10, 1, 1}    // *length* has more, so it is first
212        pd_offset = {10, 0, 31, 32}   // *length* starts at index 10 in weights
[d5ac45f]213        pd_stride = {1, 30, 300, 300} // cumulative product of pd length
[9ee2756]214        num_eval = 300   // 300 values in the dispersity loop
[e822c97]215        num_weights = 42 // 42 values in the pd vector
216        num_active = 2   // only the first two pd are active
217        theta_var =  6   // spherical correction
[d5ac45f]218    }
219
[e822c97]220    values = { scl, bkg,                                  // universal
[9ee2756]221               r, l, s1, s2, theta, phi,                  // kernel pars
[e822c97]222               in spin, out spin, spin angle,             // applied magnetism
[9ee2756]223               mx s1, my s1, mz s1, mx s2, my s2, mz s2,  // magnetic slds
[e822c97]224               r0, .., r9, l0, .., l29, s, s2,            // pd values
225               r0, .., r9, l0, .., l29, s, s2}            // pd weights
[d5ac45f]226
227    nq = 130
228    q = { q0, q1, ..., q130, x, x }  # pad to 8 element boundary
[e822c97]229    result = {r1, ..., r130, pd_norm, x }
[d5ac45f]230
[9ee2756]231The dispersity parameters are stored in as an array of parameter
232indices, one for each parameter, stored in pd_par[n]. Parameters which do
233not support dispersity do not appear in this array. Each dispersity
[6fd8de0]234parameter has a weight vector whose length is stored in pd_length[n].
[d5ac45f]235The weights are stored in a contiguous vector of weights for all
236parameters, with the starting position for the each parameter stored
237in pd_offset[n].  The values corresponding to the weights are stored
238together in a separate weights[] vector, with offset stored in
[9ee2756]239par_offset[pd_par[n]]. Dispersity parameters should be stored in
[d5ac45f]240decreasing order of length for highest efficiency.
241
[9ee2756]242We limit the number of dispersity dimensions to MAX_PD (currently 4),
243though some models may have fewer if they have fewer dispersity
[e822c97]244parameters.  The main reason for the limit is to reduce code size.
[9ee2756]245Each additional dispersity parameter requires a separate dispersity
246loop.  If more than 4 levels of dispersity are needed, then we need to
247switch to a monte carlo importance sampling algorithm with better
248performance for high-dimensional integrals.
[e822c97]249
250Constraints between parameters are not supported.  Instead users will
251have to define a new model with the constraints built in by making a
252copy of the existing model.  Mac provides OpenCL and we are supplying
253the tinycc compiler for Windows so this won't be a complete limitation,
254but it is rather inconvenient.  The process could perhaps be automated
255so that there is no code copying required, just an alternate CALL_IQ
256macro that implements the constraints.  Think carefully about constraining
257theta since the polar coordinates normalization is tied to this parameter.
[d5ac45f]258
[9ee2756]259If there is no dispersity we pretend that we have a disperisty mesh over
260a single parameter with a single point in the distribution, giving
261pd_start=0 and pd_stop=1.
[d5ac45f]262
[e822c97]263The problem details structure could be allocated and sent in as an integer
264array using the read-only flag.  This would allow us to copy it once per fit
[d5ac45f]265along with the weights vector, since features such as the number of
[9ee2756]266disperity points per pd parameter won't change between function evaluations.
267A new parameter vector must be sent for each I(q) evaluation.  This is
268not currently implemented, and would require some resturcturing of
269the :class:`sasview_model.SasviewModel` interface.
[d5ac45f]270
[9ee2756]271The results array will be initialized to zero for dispersity loop
[d5ac45f]272entry zero, and preserved between calls to [start, stop] so that the
273results accumulate by the time the loop has completed.  Background and
274scale will be applied when the loop reaches the end.  This does require
275that the results array be allocated read-write, which is less efficient
276for the GPU, but it makes the calling sequence much more manageable.
277
[03cac08]278For accuracy we may want to introduce Kahan summation into the integration::
279
280    double accumulated_error = 0.0;
281    ...
282    #if USE_KAHAN_SUMMATION
283        const double y = next - accumulated_error;
284        const double t = ret + y;
285        accumulated_error = (t - ret) - y;
286        ret = t;
287    #else
288        ret += next;
289    #endif
[e822c97]290
291This will require accumulated error for each I(q) value to be preserved
[9ee2756]292between kernel calls to implement this fully.  The *kernel_iq.c* code, which
293loops over q for each parameter set in the dispersity loop, will also need
294the accumulation vector.
Note: See TracBrowser for help on using the repository browser.