1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | import datetime |
---|
5 | from sasmodel import SasModel, load_data, set_beam_stop, plot_data |
---|
6 | |
---|
7 | TIC = None |
---|
8 | def tic(): |
---|
9 | global TIC |
---|
10 | TIC = datetime.datetime.now() |
---|
11 | |
---|
12 | def toc(): |
---|
13 | now = datetime.datetime.now() |
---|
14 | return (now-TIC).total_seconds() |
---|
15 | |
---|
16 | def sasview_model(modelname, **pars): |
---|
17 | modelname = modelname.capitalize()+"Model" |
---|
18 | sans = __import__('sans.models.'+modelname) |
---|
19 | ModelClass = getattr(getattr(sans.models,modelname,None),modelname,None) |
---|
20 | if ModelClass is None: |
---|
21 | raise ValueError("could not find model %r in sans.models"%modelname) |
---|
22 | model = ModelClass() |
---|
23 | |
---|
24 | for k,v in pars.items(): |
---|
25 | if k.endswith("_pd"): |
---|
26 | model.dispersion[k[:-3]]['width'] = v |
---|
27 | elif k.endswith("_pd_n"): |
---|
28 | model.dispersion[k[:-5]]['npts'] = v |
---|
29 | elif k.endswith("_pd_nsigma"): |
---|
30 | model.dispersion[k[:-10]]['nsigmas'] = v |
---|
31 | else: |
---|
32 | model.setParam(k, v) |
---|
33 | return model |
---|
34 | |
---|
35 | |
---|
36 | def sasview_eval(model, data): |
---|
37 | theory = model.evalDistribution([data.qx_data, data.qy_data]) |
---|
38 | return theory |
---|
39 | |
---|
40 | def demo(N=1): |
---|
41 | import sys |
---|
42 | import matplotlib.pyplot as plt |
---|
43 | import numpy as np |
---|
44 | |
---|
45 | if len(sys.argv) > 1: |
---|
46 | N = int(sys.argv[1]) |
---|
47 | data = load_data('JUN03289.DAT') |
---|
48 | set_beam_stop(data, 0.004) |
---|
49 | |
---|
50 | pars = dict( |
---|
51 | scale=1, radius=64.1, length=266.96, sldCyl=.291e-6, sldSolv=5.77e-6, background=0, |
---|
52 | cyl_theta=0, cyl_phi=0, radius_pd=0.1, radius_pd_n=10, radius_pd_nsigma=3,length_pd=0.1, |
---|
53 | length_pd_n=5, length_pd_nsigma=3, cyl_theta_pd=0.1, cyl_theta_pd_n=5, cyl_theta_pd_nsigma=3, |
---|
54 | cyl_phi_pd=0.1, cyl_phi_pd_n=10, cyl_phi_pd_nsigma=3, |
---|
55 | ) |
---|
56 | |
---|
57 | model = sasview_model('cylinder', **pars) |
---|
58 | tic() |
---|
59 | for i in range(N): |
---|
60 | cpu = sasview_eval(model, data) |
---|
61 | cpu_time = toc()*1000./N |
---|
62 | |
---|
63 | from cylcode import GpuCylinder |
---|
64 | model = SasModel(data, GpuCylinder, dtype='f', **pars) |
---|
65 | tic() |
---|
66 | for i in range(N): |
---|
67 | gpu = model.theory() |
---|
68 | gpu_time = toc()*1000./N |
---|
69 | |
---|
70 | relerr = (gpu - cpu)/cpu |
---|
71 | print "max(|(ocl-omp)/ocl|)", max(abs(relerr)) |
---|
72 | print "omp t=%.1f ms"%cpu_time |
---|
73 | print "ocl t=%.1f ms"%gpu_time |
---|
74 | |
---|
75 | plt.subplot(131); plot_data(data, cpu); plt.title("omp t=%.1f ms"%cpu_time) |
---|
76 | plt.subplot(132); plot_data(data, gpu); plt.title("ocl t=%.1f ms"%gpu_time) |
---|
77 | plt.subplot(133); plot_data(data, 1e8*relerr); plt.title("relerr x 10^8"); plt.colorbar() |
---|
78 | plt.show() |
---|
79 | |
---|
80 | |
---|
81 | if __name__ == "__main__": |
---|
82 | demo() |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | |
---|
105 | |
---|
106 | |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | |
---|