[8a20be5] | 1 | #!/usr/bin/env python |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | |
---|
[87985ca] | 4 | import sys |
---|
| 5 | import math |
---|
| 6 | |
---|
[1726b21] | 7 | import numpy as np |
---|
[473183c] | 8 | |
---|
[87985ca] | 9 | from sasmodels.bumps_model import BumpsModel, plot_data, tic |
---|
| 10 | from sasmodels import gpu, dll |
---|
| 11 | from sasmodels.convert import revert_model |
---|
| 12 | |
---|
[8a20be5] | 13 | |
---|
| 14 | def sasview_model(modelname, **pars): |
---|
[87985ca] | 15 | """ |
---|
| 16 | Load a sasview model given the model name. |
---|
| 17 | """ |
---|
| 18 | # convert model parameters from sasmodel form to sasview form |
---|
| 19 | #print "old",sorted(pars.items()) |
---|
| 20 | modelname, pars = revert_model(modelname, pars) |
---|
| 21 | #print "new",sorted(pars.items()) |
---|
[87c722e] | 22 | sas = __import__('sas.models.'+modelname) |
---|
| 23 | ModelClass = getattr(getattr(sas.models,modelname,None),modelname,None) |
---|
[8a20be5] | 24 | if ModelClass is None: |
---|
[87c722e] | 25 | raise ValueError("could not find model %r in sas.models"%modelname) |
---|
[8a20be5] | 26 | model = ModelClass() |
---|
| 27 | |
---|
| 28 | for k,v in pars.items(): |
---|
| 29 | if k.endswith("_pd"): |
---|
| 30 | model.dispersion[k[:-3]]['width'] = v |
---|
| 31 | elif k.endswith("_pd_n"): |
---|
| 32 | model.dispersion[k[:-5]]['npts'] = v |
---|
| 33 | elif k.endswith("_pd_nsigma"): |
---|
| 34 | model.dispersion[k[:-10]]['nsigmas'] = v |
---|
[87985ca] | 35 | elif k.endswith("_pd_type"): |
---|
| 36 | model.dispersion[k[:-8]]['type'] = v |
---|
[8a20be5] | 37 | else: |
---|
| 38 | model.setParam(k, v) |
---|
| 39 | return model |
---|
| 40 | |
---|
[87985ca] | 41 | def load_opencl(modelname, dtype='single'): |
---|
| 42 | sasmodels = __import__('sasmodels.models.'+modelname) |
---|
| 43 | module = getattr(sasmodels.models, modelname, None) |
---|
| 44 | kernel = gpu.load_model(module, dtype=dtype) |
---|
| 45 | return kernel |
---|
| 46 | |
---|
| 47 | def load_ctypes(modelname, dtype='single'): |
---|
| 48 | sasmodels = __import__('sasmodels.models.'+modelname) |
---|
| 49 | module = getattr(sasmodels.models, modelname, None) |
---|
| 50 | kernel = dll.load_model(module, dtype=dtype) |
---|
| 51 | return kernel |
---|
| 52 | |
---|
| 53 | def randomize(p, v): |
---|
| 54 | """ |
---|
| 55 | Randomizing parameter. |
---|
| 56 | |
---|
| 57 | Guess the parameter type from name. |
---|
| 58 | """ |
---|
| 59 | if any(p.endswith(s) for s in ('_pd_n','_pd_nsigma','_pd_type')): |
---|
| 60 | return v |
---|
| 61 | elif any(s in p for s in ('theta','phi','psi')): |
---|
| 62 | # orientation in [-180,180], orientation pd in [0,45] |
---|
| 63 | if p.endswith('_pd'): |
---|
| 64 | return 45*np.random.rand() |
---|
| 65 | else: |
---|
| 66 | return 360*np.random.rand() - 180 |
---|
| 67 | elif 'sld' in p: |
---|
| 68 | # sld in in [-0.5,10] |
---|
| 69 | return 10.5*np.random.rand() - 0.5 |
---|
| 70 | elif p.endswith('_pd'): |
---|
| 71 | # length pd in [0,1] |
---|
| 72 | return np.random.rand() |
---|
| 73 | else: |
---|
| 74 | # length, scale, background in [0,200] |
---|
| 75 | return 200*np.random.rand() |
---|
| 76 | |
---|
[216a9e1] | 77 | def randomize_model(name, pars, seed=None): |
---|
| 78 | if seed is None: |
---|
| 79 | seed = np.random.randint(1e9) |
---|
| 80 | np.random.seed(seed) |
---|
| 81 | # Note: the sort guarantees order of calls to random number generator |
---|
| 82 | pars = dict((p,randomize(p,v)) for p,v in sorted(pars.items())) |
---|
| 83 | # The capped cylinder model has a constraint on its parameters |
---|
| 84 | if name == 'capped_cylinder' and pars['cap_radius'] < pars['radius']: |
---|
| 85 | pars['radius'],pars['cap_radius'] = pars['cap_radius'],pars['radius'] |
---|
| 86 | return pars, seed |
---|
| 87 | |
---|
[87985ca] | 88 | def parlist(pars): |
---|
| 89 | return "\n".join("%s: %s"%(p,v) for p,v in sorted(pars.items())) |
---|
| 90 | |
---|
| 91 | def suppress_pd(pars): |
---|
| 92 | """ |
---|
| 93 | Suppress theta_pd for now until the normalization is resolved. |
---|
| 94 | |
---|
| 95 | May also suppress complete polydispersity of the model to test |
---|
| 96 | models more quickly. |
---|
| 97 | """ |
---|
| 98 | for p in pars: |
---|
| 99 | if p.endswith("_pd"): pars[p] = 0 |
---|
| 100 | |
---|
[216a9e1] | 101 | def eval_sasview(name, pars, data, Nevals=1): |
---|
| 102 | model = sasview_model(name, **pars) |
---|
| 103 | toc = tic() |
---|
| 104 | for _ in range(Nevals): |
---|
| 105 | if hasattr(data, 'qx_data'): |
---|
| 106 | value = model.evalDistribution([data.qx_data, data.qy_data]) |
---|
| 107 | else: |
---|
| 108 | value = model.evalDistribution(data.x) |
---|
| 109 | average_time = toc()*1000./Nevals |
---|
| 110 | return value, average_time |
---|
| 111 | |
---|
| 112 | def eval_opencl(name, pars, data, dtype='single', Nevals=1, cutoff=0): |
---|
| 113 | try: |
---|
| 114 | model = load_opencl(name, dtype=dtype) |
---|
| 115 | except Exception,exc: |
---|
| 116 | print exc |
---|
| 117 | print "... trying again with single precision" |
---|
| 118 | model = load_opencl(name, dtype='single') |
---|
| 119 | problem = BumpsModel(data, model, cutoff=cutoff, **pars) |
---|
| 120 | toc = tic() |
---|
| 121 | for _ in range(Nevals): |
---|
| 122 | #pars['scale'] = np.random.rand() |
---|
| 123 | problem.update() |
---|
| 124 | value = problem.theory() |
---|
| 125 | average_time = toc()*1000./Nevals |
---|
| 126 | return value, average_time |
---|
| 127 | |
---|
| 128 | def eval_ctypes(name, pars, data, dtype='double', Nevals=1, cutoff=0): |
---|
| 129 | model = load_ctypes(name, dtype=dtype) |
---|
| 130 | problem = BumpsModel(data, model, cutoff=cutoff, **pars) |
---|
| 131 | toc = tic() |
---|
| 132 | for _ in range(Nevals): |
---|
| 133 | problem.update() |
---|
| 134 | value = problem.theory() |
---|
| 135 | average_time = toc()*1000./Nevals |
---|
| 136 | return value, average_time |
---|
| 137 | |
---|
| 138 | def make_data(qmax, is2D, Nq=128): |
---|
| 139 | if is2D: |
---|
[87985ca] | 140 | from sasmodels.bumps_model import empty_data2D, set_beam_stop |
---|
[216a9e1] | 141 | data = empty_data2D(np.linspace(-qmax, qmax, Nq)) |
---|
[87985ca] | 142 | set_beam_stop(data, 0.004) |
---|
| 143 | index = ~data.mask |
---|
[216a9e1] | 144 | else: |
---|
| 145 | from sasmodels.bumps_model import empty_data1D |
---|
| 146 | qmax = math.log10(qmax) |
---|
| 147 | data = empty_data1D(np.logspace(qmax-3, qmax, Nq)) |
---|
| 148 | index = slice(None, None) |
---|
| 149 | return data, index |
---|
| 150 | |
---|
| 151 | def compare(name, pars, Ncpu, Ngpu, opts, set_pars): |
---|
| 152 | opt_values = dict(split |
---|
| 153 | for s in opts for split in ((s.split('='),)) |
---|
| 154 | if len(split) == 2) |
---|
| 155 | # Sort out data |
---|
| 156 | qmax = 1.0 if '-highq' in opts else (0.2 if '-midq' in opts else 0.05) |
---|
| 157 | Nq = int(opt_values.get('-Nq', '128')) |
---|
| 158 | is2D = not "-1d" in opts |
---|
| 159 | data, index = make_data(qmax, is2D, Nq) |
---|
| 160 | |
---|
[87985ca] | 161 | |
---|
| 162 | # modelling accuracy is determined by dtype and cutoff |
---|
| 163 | dtype = 'double' if '-double' in opts else 'single' |
---|
[216a9e1] | 164 | cutoff = float(opt_values.get('-cutoff','1e-5')) |
---|
[87985ca] | 165 | |
---|
| 166 | # randomize parameters |
---|
[216a9e1] | 167 | if '-random' in opts or '-random' in opt_values: |
---|
| 168 | seed = int(opt_values['-random']) if '-random' in opt_values else None |
---|
| 169 | pars, seed = randomize_model(name, pars, seed=seed) |
---|
[87985ca] | 170 | print "Randomize using -random=%i"%seed |
---|
| 171 | pars.update(set_pars) |
---|
| 172 | |
---|
| 173 | # parameter selection |
---|
| 174 | if '-mono' in opts: |
---|
| 175 | suppress_pd(pars) |
---|
| 176 | if '-pars' in opts: |
---|
| 177 | print "pars",parlist(pars) |
---|
| 178 | |
---|
| 179 | # OpenCl calculation |
---|
| 180 | if Ngpu > 0: |
---|
[216a9e1] | 181 | gpu, gpu_time = eval_opencl(name, pars, data, dtype, Ngpu) |
---|
[87985ca] | 182 | print "opencl t=%.1f ms, intensity=%.0f"%(gpu_time, sum(gpu[index])) |
---|
| 183 | #print max(gpu), min(gpu) |
---|
| 184 | |
---|
| 185 | # ctypes/sasview calculation |
---|
| 186 | if Ncpu > 0 and "-ctypes" in opts: |
---|
[216a9e1] | 187 | cpu, cpu_time = eval_ctypes(name, pars, data, dtype=dtype, cutoff=cutoff, Nevals=Ncpu) |
---|
[87985ca] | 188 | comp = "ctypes" |
---|
| 189 | print "ctypes t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) |
---|
| 190 | elif Ncpu > 0: |
---|
[216a9e1] | 191 | cpu, cpu_time = eval_sasview(name, pars, data, Ncpu) |
---|
[87985ca] | 192 | comp = "sasview" |
---|
| 193 | print "sasview t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) |
---|
| 194 | |
---|
| 195 | # Compare, but only if computing both forms |
---|
| 196 | if Ngpu > 0 and Ncpu > 0: |
---|
| 197 | #print "speedup %.2g"%(cpu_time/gpu_time) |
---|
| 198 | #print "max |gpu/cpu|", max(abs(gpu/cpu)), "%.15g"%max(abs(gpu)), "%.15g"%max(abs(cpu)) |
---|
| 199 | #cpu *= max(gpu/cpu) |
---|
| 200 | resid, relerr = np.zeros_like(gpu), np.zeros_like(gpu) |
---|
| 201 | resid[index] = (gpu - cpu)[index] |
---|
| 202 | relerr[index] = resid[index]/cpu[index] |
---|
[ba69383] | 203 | #bad = (relerr>1e-4) |
---|
| 204 | #print relerr[bad],cpu[bad],gpu[bad],data.qx_data[bad],data.qy_data[bad] |
---|
[87985ca] | 205 | print "max(|ocl-%s|)"%comp, max(abs(resid[index])) |
---|
[ba69383] | 206 | print "max(|(ocl-%s)/%s|)"%(comp,comp), max(abs(relerr[index])) |
---|
| 207 | p98 = int(len(relerr[index])*0.98) |
---|
| 208 | print "98%% (|(ocl-%s)/%s|) <"%(comp,comp), np.sort(abs(relerr[index]))[p98] |
---|
| 209 | |
---|
[87985ca] | 210 | |
---|
| 211 | # Plot if requested |
---|
| 212 | if '-noplot' in opts: return |
---|
[1726b21] | 213 | import matplotlib.pyplot as plt |
---|
[87985ca] | 214 | if Ncpu > 0: |
---|
| 215 | if Ngpu > 0: plt.subplot(131) |
---|
| 216 | plot_data(data, cpu, scale='log') |
---|
| 217 | plt.title("%s t=%.1f ms"%(comp,cpu_time)) |
---|
| 218 | if Ngpu > 0: |
---|
| 219 | if Ncpu > 0: plt.subplot(132) |
---|
| 220 | plot_data(data, gpu, scale='log') |
---|
| 221 | plt.title("opencl t=%.1f ms"%gpu_time) |
---|
| 222 | if Ncpu > 0 and Ngpu > 0: |
---|
| 223 | plt.subplot(133) |
---|
| 224 | err = resid if '-abs' in opts else relerr |
---|
| 225 | errstr = "abs err" if '-abs' in opts else "rel err" |
---|
| 226 | #err,errstr = gpu/cpu,"ratio" |
---|
| 227 | plot_data(data, err, scale='linear') |
---|
| 228 | plt.title("max %s = %.3g"%(errstr, max(abs(err[index])))) |
---|
[ba69383] | 229 | if is2D: plt.colorbar() |
---|
| 230 | |
---|
| 231 | if Ncpu > 0 and Ngpu > 0 and '-hist' in opts: |
---|
| 232 | plt.figure() |
---|
| 233 | v = relerr[index] |
---|
| 234 | v[v==0] = 0.5*np.min(np.abs(v[v!=0])) |
---|
| 235 | plt.hist(np.log10(np.abs(v)), normed=1, bins=50); |
---|
| 236 | plt.xlabel('log10(err), err = | F(q) single - F(q) double| / | F(q) double |'); |
---|
| 237 | plt.ylabel('P(err)') |
---|
| 238 | plt.title('Comparison of single and double precision models for %s'%name) |
---|
| 239 | |
---|
[8a20be5] | 240 | plt.show() |
---|
| 241 | |
---|
[87985ca] | 242 | # =========================================================================== |
---|
| 243 | # |
---|
| 244 | USAGE=""" |
---|
| 245 | usage: compare.py model [Nopencl] [Nsasview] [options...] [key=val] |
---|
| 246 | |
---|
| 247 | Compare the speed and value for a model between the SasView original and the |
---|
| 248 | OpenCL rewrite. |
---|
| 249 | |
---|
| 250 | model is the name of the model to compare (see below). |
---|
| 251 | Nopencl is the number of times to run the OpenCL model (default=5) |
---|
| 252 | Nsasview is the number of times to run the Sasview model (default=1) |
---|
| 253 | |
---|
| 254 | Options (* for default): |
---|
| 255 | |
---|
| 256 | -plot*/-noplot plots or suppress the plot of the model |
---|
[2d0aced] | 257 | -single*/-double uses double precision for comparison |
---|
| 258 | -lowq*/-midq/-highq use q values up to 0.05, 0.2 or 1.0 |
---|
[216a9e1] | 259 | -Nq=128 sets the number of Q points in the data set |
---|
| 260 | -1d/-2d* computes 1d or 2d data |
---|
[2d0aced] | 261 | -preset*/-random[=seed] preset or random parameters |
---|
| 262 | -mono/-poly* force monodisperse/polydisperse |
---|
| 263 | -ctypes/-sasview* whether cpu is tested using sasview or ctypes |
---|
| 264 | -cutoff=1e-5*/value cutoff for including a point in polydispersity |
---|
| 265 | -pars/-nopars* prints the parameter set or not |
---|
| 266 | -abs/-rel* plot relative or absolute error |
---|
[ba69383] | 267 | -hist/-nohist* plot histogram of relative error |
---|
[87985ca] | 268 | |
---|
| 269 | Key=value pairs allow you to set specific values to any of the model |
---|
| 270 | parameters. |
---|
| 271 | |
---|
| 272 | Available models: |
---|
| 273 | |
---|
| 274 | %s |
---|
| 275 | """ |
---|
| 276 | |
---|
[216a9e1] | 277 | NAME_OPTIONS = set([ |
---|
[87985ca] | 278 | 'plot','noplot', |
---|
| 279 | 'single','double', |
---|
| 280 | 'lowq','midq','highq', |
---|
| 281 | '2d','1d', |
---|
| 282 | 'preset','random', |
---|
| 283 | 'poly','mono', |
---|
| 284 | 'sasview','ctypes', |
---|
| 285 | 'nopars','pars', |
---|
| 286 | 'rel','abs', |
---|
[ba69383] | 287 | 'hist','nohist', |
---|
[216a9e1] | 288 | ]) |
---|
| 289 | VALUE_OPTIONS = [ |
---|
| 290 | # Note: random is both a name option and a value option |
---|
| 291 | 'cutoff', 'random', 'Nq', |
---|
[87985ca] | 292 | ] |
---|
| 293 | |
---|
| 294 | def main(): |
---|
| 295 | opts = [arg for arg in sys.argv[1:] if arg.startswith('-')] |
---|
| 296 | args = [arg for arg in sys.argv[1:] if not arg.startswith('-')] |
---|
| 297 | models = "\n ".join("%-7s: %s"%(k,v.__name__.replace('_',' ')) |
---|
| 298 | for k,v in sorted(MODELS.items())) |
---|
| 299 | if len(args) == 0: |
---|
| 300 | print(USAGE%models) |
---|
| 301 | sys.exit(1) |
---|
| 302 | if args[0] not in MODELS: |
---|
| 303 | print "Model %r not available. Use one of:\n %s"%(args[0],models) |
---|
| 304 | sys.exit(1) |
---|
| 305 | |
---|
| 306 | invalid = [o[1:] for o in opts |
---|
[216a9e1] | 307 | if o[1:] not in NAME_OPTIONS |
---|
| 308 | and not any(o.startswith('-%s='%t) for t in VALUE_OPTIONS)] |
---|
[87985ca] | 309 | if invalid: |
---|
| 310 | print "Invalid options: %s"%(", ".join(invalid)) |
---|
| 311 | sys.exit(1) |
---|
| 312 | |
---|
| 313 | name, pars = MODELS[args[0]]() |
---|
| 314 | Nopencl = int(args[1]) if len(args) > 1 else 5 |
---|
[ba69383] | 315 | Nsasview = int(args[2]) if len(args) > 2 else 1 |
---|
[87985ca] | 316 | |
---|
| 317 | # Fill in default polydispersity parameters |
---|
| 318 | pds = set(p.split('_pd')[0] for p in pars if p.endswith('_pd')) |
---|
| 319 | for p in pds: |
---|
| 320 | if p+"_pd_nsigma" not in pars: pars[p+"_pd_nsigma"] = 3 |
---|
| 321 | if p+"_pd_type" not in pars: pars[p+"_pd_type"] = "gaussian" |
---|
| 322 | |
---|
| 323 | # Fill in parameters given on the command line |
---|
| 324 | set_pars = {} |
---|
| 325 | for arg in args[3:]: |
---|
| 326 | k,v = arg.split('=') |
---|
| 327 | if k not in pars: |
---|
| 328 | # extract base name without distribution |
---|
| 329 | s = set(p.split('_pd')[0] for p in pars) |
---|
| 330 | print "%r invalid; parameters are: %s"%(k,", ".join(sorted(s))) |
---|
| 331 | sys.exit(1) |
---|
| 332 | set_pars[k] = float(v) if not v.endswith('type') else v |
---|
| 333 | |
---|
| 334 | compare(name, pars, Nsasview, Nopencl, opts, set_pars) |
---|
| 335 | |
---|
| 336 | # =========================================================================== |
---|
| 337 | # |
---|
| 338 | |
---|
| 339 | MODELS = {} |
---|
| 340 | def model(name): |
---|
| 341 | def gather_function(fn): |
---|
| 342 | MODELS[name] = fn |
---|
| 343 | return fn |
---|
| 344 | return gather_function |
---|
| 345 | |
---|
| 346 | |
---|
| 347 | @model('cyl') |
---|
| 348 | def cylinder(): |
---|
[1726b21] | 349 | pars = dict( |
---|
[87985ca] | 350 | scale=1, background=0, |
---|
| 351 | sld=6, solvent_sld=1, |
---|
| 352 | #radius=5, length=20, |
---|
| 353 | radius=260, length=290, |
---|
| 354 | theta=30, phi=0, |
---|
[216a9e1] | 355 | radius_pd=.2, radius_pd_n=9, |
---|
| 356 | length_pd=.2,length_pd_n=10, |
---|
[87985ca] | 357 | theta_pd=15, theta_pd_n=45, |
---|
| 358 | phi_pd=15, phi_pd_n=1, |
---|
| 359 | ) |
---|
| 360 | return 'cylinder', pars |
---|
| 361 | |
---|
| 362 | @model('capcyl') |
---|
| 363 | def capped_cylinder(): |
---|
| 364 | pars = dict( |
---|
| 365 | scale=1, background=0, |
---|
| 366 | sld=6, solvent_sld=1, |
---|
| 367 | radius=260, cap_radius=290, length=290, |
---|
| 368 | theta=30, phi=15, |
---|
| 369 | radius_pd=.2, radius_pd_n=1, |
---|
| 370 | cap_radius_pd=.2, cap_radius_pd_n=1, |
---|
[216a9e1] | 371 | length_pd=.2, length_pd_n=10, |
---|
[87985ca] | 372 | theta_pd=15, theta_pd_n=45, |
---|
| 373 | phi_pd=15, phi_pd_n=1, |
---|
| 374 | ) |
---|
| 375 | return 'capped_cylinder', pars |
---|
| 376 | |
---|
| 377 | |
---|
| 378 | @model('cscyl') |
---|
| 379 | def core_shell_cylinder(): |
---|
| 380 | pars = dict( |
---|
| 381 | scale=1, background=0, |
---|
| 382 | core_sld=6, shell_sld=8, solvent_sld=1, |
---|
| 383 | radius=45, thickness=25, length=340, |
---|
| 384 | theta=30, phi=15, |
---|
| 385 | radius_pd=.2, radius_pd_n=1, |
---|
[216a9e1] | 386 | length_pd=.2, length_pd_n=10, |
---|
| 387 | thickness_pd=.2, thickness_pd_n=10, |
---|
[87985ca] | 388 | theta_pd=15, theta_pd_n=45, |
---|
| 389 | phi_pd=15, phi_pd_n=1, |
---|
| 390 | ) |
---|
| 391 | return 'core_shell_cylinder', pars |
---|
| 392 | |
---|
| 393 | |
---|
| 394 | @model('ell') |
---|
| 395 | def ellipsoid(): |
---|
| 396 | pars = dict( |
---|
| 397 | scale=1, background=0, |
---|
| 398 | sld=6, solvent_sld=1, |
---|
| 399 | rpolar=50, requatorial=30, |
---|
| 400 | theta=30, phi=15, |
---|
[216a9e1] | 401 | rpolar_pd=.2, rpolar_pd_n=15, |
---|
| 402 | requatorial_pd=.2, requatorial_pd_n=15, |
---|
[87985ca] | 403 | theta_pd=15, theta_pd_n=45, |
---|
| 404 | phi_pd=15, phi_pd_n=1, |
---|
| 405 | ) |
---|
| 406 | return 'ellipsoid', pars |
---|
| 407 | |
---|
| 408 | |
---|
| 409 | @model('ell3') |
---|
| 410 | def triaxial_ellipsoid(): |
---|
| 411 | pars = dict( |
---|
| 412 | scale=1, background=0, |
---|
| 413 | sld=6, solvent_sld=1, |
---|
| 414 | theta=30, phi=15, psi=5, |
---|
| 415 | req_minor=25, req_major=36, rpolar=50, |
---|
| 416 | req_minor_pd=0, req_minor_pd_n=1, |
---|
| 417 | req_major_pd=0, req_major_pd_n=1, |
---|
[216a9e1] | 418 | rpolar_pd=.2, rpolar_pd_n=30, |
---|
[87985ca] | 419 | theta_pd=15, theta_pd_n=45, |
---|
| 420 | phi_pd=15, phi_pd_n=1, |
---|
| 421 | psi_pd=15, psi_pd_n=1, |
---|
| 422 | ) |
---|
| 423 | return 'triaxial_ellipsoid', pars |
---|
| 424 | |
---|
[87c722e] | 425 | @model('sphpy') |
---|
| 426 | def spherepy(): |
---|
| 427 | pars = dict( |
---|
| 428 | scale=1, background=0, |
---|
| 429 | sld=6, solvent_sld=1, |
---|
| 430 | radius=120, |
---|
| 431 | radius_pd=.2, radius_pd_n=45, |
---|
| 432 | ) |
---|
| 433 | return 'spherepy', pars |
---|
| 434 | |
---|
[87985ca] | 435 | @model('sph') |
---|
| 436 | def sphere(): |
---|
| 437 | pars = dict( |
---|
| 438 | scale=1, background=0, |
---|
| 439 | sld=6, solvent_sld=1, |
---|
| 440 | radius=120, |
---|
| 441 | radius_pd=.2, radius_pd_n=45, |
---|
| 442 | ) |
---|
| 443 | return 'sphere', pars |
---|
| 444 | |
---|
| 445 | @model('lam') |
---|
| 446 | def lamellar(): |
---|
| 447 | pars = dict( |
---|
| 448 | scale=1, background=0, |
---|
| 449 | sld=6, solvent_sld=1, |
---|
| 450 | thickness=40, |
---|
| 451 | thickness_pd= 0.2, thickness_pd_n=40, |
---|
| 452 | ) |
---|
| 453 | return 'lamellar', pars |
---|
[8a20be5] | 454 | |
---|
| 455 | if __name__ == "__main__": |
---|
[87985ca] | 456 | main() |
---|