[8a20be5] | 1 | #!/usr/bin/env python |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | |
---|
[87985ca] | 4 | import sys |
---|
| 5 | import math |
---|
| 6 | |
---|
[1726b21] | 7 | import numpy as np |
---|
[473183c] | 8 | |
---|
[87985ca] | 9 | from sasmodels.bumps_model import BumpsModel, plot_data, tic |
---|
| 10 | from sasmodels import gpu, dll |
---|
| 11 | from sasmodels.convert import revert_model |
---|
| 12 | |
---|
[8a20be5] | 13 | |
---|
| 14 | def sasview_model(modelname, **pars): |
---|
[87985ca] | 15 | """ |
---|
| 16 | Load a sasview model given the model name. |
---|
| 17 | """ |
---|
| 18 | # convert model parameters from sasmodel form to sasview form |
---|
| 19 | #print "old",sorted(pars.items()) |
---|
| 20 | modelname, pars = revert_model(modelname, pars) |
---|
| 21 | #print "new",sorted(pars.items()) |
---|
[8a20be5] | 22 | sans = __import__('sans.models.'+modelname) |
---|
| 23 | ModelClass = getattr(getattr(sans.models,modelname,None),modelname,None) |
---|
| 24 | if ModelClass is None: |
---|
| 25 | raise ValueError("could not find model %r in sans.models"%modelname) |
---|
| 26 | model = ModelClass() |
---|
| 27 | |
---|
| 28 | for k,v in pars.items(): |
---|
| 29 | if k.endswith("_pd"): |
---|
| 30 | model.dispersion[k[:-3]]['width'] = v |
---|
| 31 | elif k.endswith("_pd_n"): |
---|
| 32 | model.dispersion[k[:-5]]['npts'] = v |
---|
| 33 | elif k.endswith("_pd_nsigma"): |
---|
| 34 | model.dispersion[k[:-10]]['nsigmas'] = v |
---|
[87985ca] | 35 | elif k.endswith("_pd_type"): |
---|
| 36 | model.dispersion[k[:-8]]['type'] = v |
---|
[8a20be5] | 37 | else: |
---|
| 38 | model.setParam(k, v) |
---|
| 39 | return model |
---|
| 40 | |
---|
[87985ca] | 41 | def load_opencl(modelname, dtype='single'): |
---|
| 42 | sasmodels = __import__('sasmodels.models.'+modelname) |
---|
| 43 | module = getattr(sasmodels.models, modelname, None) |
---|
| 44 | kernel = gpu.load_model(module, dtype=dtype) |
---|
| 45 | return kernel |
---|
| 46 | |
---|
| 47 | def load_ctypes(modelname, dtype='single'): |
---|
| 48 | sasmodels = __import__('sasmodels.models.'+modelname) |
---|
| 49 | module = getattr(sasmodels.models, modelname, None) |
---|
| 50 | kernel = dll.load_model(module, dtype=dtype) |
---|
| 51 | return kernel |
---|
| 52 | |
---|
| 53 | def randomize(p, v): |
---|
| 54 | """ |
---|
| 55 | Randomizing parameter. |
---|
| 56 | |
---|
| 57 | Guess the parameter type from name. |
---|
| 58 | """ |
---|
| 59 | if any(p.endswith(s) for s in ('_pd_n','_pd_nsigma','_pd_type')): |
---|
| 60 | return v |
---|
| 61 | elif any(s in p for s in ('theta','phi','psi')): |
---|
| 62 | # orientation in [-180,180], orientation pd in [0,45] |
---|
| 63 | if p.endswith('_pd'): |
---|
| 64 | return 45*np.random.rand() |
---|
| 65 | else: |
---|
| 66 | return 360*np.random.rand() - 180 |
---|
| 67 | elif 'sld' in p: |
---|
| 68 | # sld in in [-0.5,10] |
---|
| 69 | return 10.5*np.random.rand() - 0.5 |
---|
| 70 | elif p.endswith('_pd'): |
---|
| 71 | # length pd in [0,1] |
---|
| 72 | return np.random.rand() |
---|
| 73 | else: |
---|
| 74 | # length, scale, background in [0,200] |
---|
| 75 | return 200*np.random.rand() |
---|
| 76 | |
---|
| 77 | def parlist(pars): |
---|
| 78 | return "\n".join("%s: %s"%(p,v) for p,v in sorted(pars.items())) |
---|
| 79 | |
---|
| 80 | def suppress_pd(pars): |
---|
| 81 | """ |
---|
| 82 | Suppress theta_pd for now until the normalization is resolved. |
---|
| 83 | |
---|
| 84 | May also suppress complete polydispersity of the model to test |
---|
| 85 | models more quickly. |
---|
| 86 | """ |
---|
| 87 | for p in pars: |
---|
| 88 | if p.endswith("_pd"): pars[p] = 0 |
---|
| 89 | |
---|
| 90 | def compare(name, pars, Ncpu, Ngpu, opts, set_pars): |
---|
| 91 | |
---|
| 92 | # Sort out data |
---|
| 93 | qmax = 1.0 if '-highq' in opts else (0.2 if '-midq' in opts else 0.05) |
---|
| 94 | if "-1d" in opts: |
---|
| 95 | from sasmodels.bumps_model import empty_data1D |
---|
| 96 | qmax = math.log10(qmax) |
---|
| 97 | data = empty_data1D(np.logspace(qmax-3, qmax, 128)) |
---|
| 98 | index = slice(None, None) |
---|
| 99 | else: |
---|
| 100 | from sasmodels.bumps_model import empty_data2D, set_beam_stop |
---|
| 101 | data = empty_data2D(np.linspace(-qmax, qmax, 128)) |
---|
| 102 | set_beam_stop(data, 0.004) |
---|
| 103 | index = ~data.mask |
---|
| 104 | is2D = hasattr(data, 'qx_data') |
---|
| 105 | |
---|
| 106 | # modelling accuracy is determined by dtype and cutoff |
---|
| 107 | dtype = 'double' if '-double' in opts else 'single' |
---|
| 108 | cutoff_opts = [s for s in opts if s.startswith('-cutoff')] |
---|
| 109 | cutoff = float(cutoff_opts[0].split('=')[1]) if cutoff_opts else 1e-5 |
---|
| 110 | |
---|
| 111 | # randomize parameters |
---|
| 112 | random_opts = [s for s in opts if s.startswith('-random')] |
---|
| 113 | if random_opts: |
---|
| 114 | if '=' in random_opts[0]: |
---|
| 115 | seed = int(random_opts[0].split('=')[1]) |
---|
| 116 | else: |
---|
| 117 | seed = int(np.random.rand()*10000) |
---|
| 118 | np.random.seed(seed) |
---|
| 119 | print "Randomize using -random=%i"%seed |
---|
| 120 | # Note: the sort guarantees order of calls to random number generator |
---|
| 121 | pars = dict((p,randomize(p,v)) for p,v in sorted(pars.items())) |
---|
| 122 | # The capped cylinder model has a constraint on its parameters |
---|
| 123 | if name == 'capped_cylinder' and pars['cap_radius'] < pars['radius']: |
---|
| 124 | pars['radius'],pars['cap_radius'] = pars['cap_radius'],pars['radius'] |
---|
| 125 | pars.update(set_pars) |
---|
| 126 | |
---|
| 127 | # parameter selection |
---|
| 128 | if '-mono' in opts: |
---|
| 129 | suppress_pd(pars) |
---|
| 130 | if '-pars' in opts: |
---|
| 131 | print "pars",parlist(pars) |
---|
| 132 | |
---|
| 133 | # OpenCl calculation |
---|
| 134 | if Ngpu > 0: |
---|
| 135 | try: |
---|
| 136 | model = load_opencl(name, dtype=dtype) |
---|
| 137 | except Exception,exc: |
---|
| 138 | print exc |
---|
| 139 | print "... trying again with single precision" |
---|
| 140 | model = load_opencl(name, dtype='single') |
---|
| 141 | problem = BumpsModel(data, model, cutoff=cutoff, **pars) |
---|
| 142 | toc = tic() |
---|
| 143 | for _ in range(Ngpu): |
---|
| 144 | #pars['scale'] = np.random.rand() |
---|
| 145 | problem.update() |
---|
| 146 | gpu = problem.theory() |
---|
| 147 | gpu_time = toc()*1000./Ngpu |
---|
| 148 | print "opencl t=%.1f ms, intensity=%.0f"%(gpu_time, sum(gpu[index])) |
---|
| 149 | #print max(gpu), min(gpu) |
---|
| 150 | |
---|
| 151 | # ctypes/sasview calculation |
---|
| 152 | if Ncpu > 0 and "-ctypes" in opts: |
---|
| 153 | model = load_ctypes(name, dtype=dtype) |
---|
| 154 | problem = BumpsModel(data, model, cutoff=cutoff, **pars) |
---|
| 155 | toc = tic() |
---|
| 156 | for _ in range(Ncpu): |
---|
| 157 | problem.update() |
---|
| 158 | cpu = problem.theory() |
---|
| 159 | cpu_time = toc()*1000./Ncpu |
---|
| 160 | comp = "ctypes" |
---|
| 161 | print "ctypes t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) |
---|
| 162 | elif Ncpu > 0: |
---|
| 163 | model = sasview_model(name, **pars) |
---|
| 164 | toc = tic() |
---|
| 165 | for _ in range(Ncpu): |
---|
| 166 | if is2D: |
---|
| 167 | cpu = model.evalDistribution([data.qx_data, data.qy_data]) |
---|
| 168 | else: |
---|
| 169 | cpu = model.evalDistribution(data.x) |
---|
| 170 | cpu_time = toc()*1000./Ncpu |
---|
| 171 | comp = "sasview" |
---|
| 172 | print "sasview t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) |
---|
| 173 | |
---|
| 174 | # Compare, but only if computing both forms |
---|
| 175 | if Ngpu > 0 and Ncpu > 0: |
---|
| 176 | #print "speedup %.2g"%(cpu_time/gpu_time) |
---|
| 177 | #print "max |gpu/cpu|", max(abs(gpu/cpu)), "%.15g"%max(abs(gpu)), "%.15g"%max(abs(cpu)) |
---|
| 178 | #cpu *= max(gpu/cpu) |
---|
| 179 | resid, relerr = np.zeros_like(gpu), np.zeros_like(gpu) |
---|
| 180 | resid[index] = (gpu - cpu)[index] |
---|
| 181 | relerr[index] = resid[index]/cpu[index] |
---|
| 182 | print "max(|ocl-%s|)"%comp, max(abs(resid[index])) |
---|
| 183 | print "max(|(ocl-%s)/ocl|)"%comp, max(abs(relerr[index])) |
---|
| 184 | |
---|
| 185 | # Plot if requested |
---|
| 186 | if '-noplot' in opts: return |
---|
[1726b21] | 187 | import matplotlib.pyplot as plt |
---|
[87985ca] | 188 | if Ncpu > 0: |
---|
| 189 | if Ngpu > 0: plt.subplot(131) |
---|
| 190 | plot_data(data, cpu, scale='log') |
---|
| 191 | plt.title("%s t=%.1f ms"%(comp,cpu_time)) |
---|
| 192 | if Ngpu > 0: |
---|
| 193 | if Ncpu > 0: plt.subplot(132) |
---|
| 194 | plot_data(data, gpu, scale='log') |
---|
| 195 | plt.title("opencl t=%.1f ms"%gpu_time) |
---|
| 196 | if Ncpu > 0 and Ngpu > 0: |
---|
| 197 | plt.subplot(133) |
---|
| 198 | err = resid if '-abs' in opts else relerr |
---|
| 199 | errstr = "abs err" if '-abs' in opts else "rel err" |
---|
| 200 | #err,errstr = gpu/cpu,"ratio" |
---|
| 201 | plot_data(data, err, scale='linear') |
---|
| 202 | plt.title("max %s = %.3g"%(errstr, max(abs(err[index])))) |
---|
| 203 | if is2D: plt.colorbar() |
---|
[8a20be5] | 204 | plt.show() |
---|
| 205 | |
---|
[87985ca] | 206 | # =========================================================================== |
---|
| 207 | # |
---|
| 208 | USAGE=""" |
---|
| 209 | usage: compare.py model [Nopencl] [Nsasview] [options...] [key=val] |
---|
| 210 | |
---|
| 211 | Compare the speed and value for a model between the SasView original and the |
---|
| 212 | OpenCL rewrite. |
---|
| 213 | |
---|
| 214 | model is the name of the model to compare (see below). |
---|
| 215 | Nopencl is the number of times to run the OpenCL model (default=5) |
---|
| 216 | Nsasview is the number of times to run the Sasview model (default=1) |
---|
| 217 | |
---|
| 218 | Options (* for default): |
---|
| 219 | |
---|
| 220 | -plot*/-noplot plots or suppress the plot of the model |
---|
[2d0aced] | 221 | -single*/-double uses double precision for comparison |
---|
| 222 | -lowq*/-midq/-highq use q values up to 0.05, 0.2 or 1.0 |
---|
| 223 | -1d/-2d* uses 1d or 2d random data |
---|
| 224 | -preset*/-random[=seed] preset or random parameters |
---|
| 225 | -mono/-poly* force monodisperse/polydisperse |
---|
| 226 | -ctypes/-sasview* whether cpu is tested using sasview or ctypes |
---|
| 227 | -cutoff=1e-5*/value cutoff for including a point in polydispersity |
---|
| 228 | -pars/-nopars* prints the parameter set or not |
---|
| 229 | -abs/-rel* plot relative or absolute error |
---|
[87985ca] | 230 | |
---|
| 231 | Key=value pairs allow you to set specific values to any of the model |
---|
| 232 | parameters. |
---|
| 233 | |
---|
| 234 | Available models: |
---|
| 235 | |
---|
| 236 | %s |
---|
| 237 | """ |
---|
| 238 | |
---|
| 239 | VALID_OPTIONS = [ |
---|
| 240 | 'plot','noplot', |
---|
| 241 | 'single','double', |
---|
| 242 | 'lowq','midq','highq', |
---|
| 243 | '2d','1d', |
---|
| 244 | 'preset','random', |
---|
| 245 | 'poly','mono', |
---|
| 246 | 'sasview','ctypes', |
---|
| 247 | 'nopars','pars', |
---|
| 248 | 'rel','abs', |
---|
| 249 | ] |
---|
| 250 | |
---|
| 251 | def main(): |
---|
| 252 | opts = [arg for arg in sys.argv[1:] if arg.startswith('-')] |
---|
| 253 | args = [arg for arg in sys.argv[1:] if not arg.startswith('-')] |
---|
| 254 | models = "\n ".join("%-7s: %s"%(k,v.__name__.replace('_',' ')) |
---|
| 255 | for k,v in sorted(MODELS.items())) |
---|
| 256 | if len(args) == 0: |
---|
| 257 | print(USAGE%models) |
---|
| 258 | sys.exit(1) |
---|
| 259 | if args[0] not in MODELS: |
---|
| 260 | print "Model %r not available. Use one of:\n %s"%(args[0],models) |
---|
| 261 | sys.exit(1) |
---|
| 262 | |
---|
| 263 | valid_opts = set(VALID_OPTIONS) |
---|
| 264 | invalid = [o[1:] for o in opts |
---|
| 265 | if o[1:] not in valid_opts |
---|
| 266 | and not o.startswith('-cutoff=') |
---|
| 267 | and not o.startswith('-random=')] |
---|
| 268 | if invalid: |
---|
| 269 | print "Invalid options: %s"%(", ".join(invalid)) |
---|
| 270 | sys.exit(1) |
---|
| 271 | |
---|
| 272 | name, pars = MODELS[args[0]]() |
---|
| 273 | Nopencl = int(args[1]) if len(args) > 1 else 5 |
---|
| 274 | Nsasview = int(args[2]) if len(args) > 3 else 1 |
---|
| 275 | |
---|
| 276 | # Fill in default polydispersity parameters |
---|
| 277 | pds = set(p.split('_pd')[0] for p in pars if p.endswith('_pd')) |
---|
| 278 | for p in pds: |
---|
| 279 | if p+"_pd_nsigma" not in pars: pars[p+"_pd_nsigma"] = 3 |
---|
| 280 | if p+"_pd_type" not in pars: pars[p+"_pd_type"] = "gaussian" |
---|
| 281 | |
---|
| 282 | # Fill in parameters given on the command line |
---|
| 283 | set_pars = {} |
---|
| 284 | for arg in args[3:]: |
---|
| 285 | k,v = arg.split('=') |
---|
| 286 | if k not in pars: |
---|
| 287 | # extract base name without distribution |
---|
| 288 | s = set(p.split('_pd')[0] for p in pars) |
---|
| 289 | print "%r invalid; parameters are: %s"%(k,", ".join(sorted(s))) |
---|
| 290 | sys.exit(1) |
---|
| 291 | set_pars[k] = float(v) if not v.endswith('type') else v |
---|
| 292 | |
---|
| 293 | compare(name, pars, Nsasview, Nopencl, opts, set_pars) |
---|
| 294 | |
---|
| 295 | # =========================================================================== |
---|
| 296 | # |
---|
| 297 | |
---|
| 298 | MODELS = {} |
---|
| 299 | def model(name): |
---|
| 300 | def gather_function(fn): |
---|
| 301 | MODELS[name] = fn |
---|
| 302 | return fn |
---|
| 303 | return gather_function |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | @model('cyl') |
---|
| 307 | def cylinder(): |
---|
[1726b21] | 308 | pars = dict( |
---|
[87985ca] | 309 | scale=1, background=0, |
---|
| 310 | sld=6, solvent_sld=1, |
---|
| 311 | #radius=5, length=20, |
---|
| 312 | radius=260, length=290, |
---|
| 313 | theta=30, phi=0, |
---|
| 314 | radius_pd=.2, radius_pd_n=1, |
---|
| 315 | length_pd=.2,length_pd_n=1, |
---|
| 316 | theta_pd=15, theta_pd_n=45, |
---|
| 317 | phi_pd=15, phi_pd_n=1, |
---|
| 318 | ) |
---|
| 319 | return 'cylinder', pars |
---|
| 320 | |
---|
| 321 | @model('capcyl') |
---|
| 322 | def capped_cylinder(): |
---|
| 323 | pars = dict( |
---|
| 324 | scale=1, background=0, |
---|
| 325 | sld=6, solvent_sld=1, |
---|
| 326 | radius=260, cap_radius=290, length=290, |
---|
| 327 | theta=30, phi=15, |
---|
| 328 | radius_pd=.2, radius_pd_n=1, |
---|
| 329 | cap_radius_pd=.2, cap_radius_pd_n=1, |
---|
| 330 | length_pd=.2, length_pd_n=1, |
---|
| 331 | theta_pd=15, theta_pd_n=45, |
---|
| 332 | phi_pd=15, phi_pd_n=1, |
---|
| 333 | ) |
---|
| 334 | return 'capped_cylinder', pars |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | @model('cscyl') |
---|
| 338 | def core_shell_cylinder(): |
---|
| 339 | pars = dict( |
---|
| 340 | scale=1, background=0, |
---|
| 341 | core_sld=6, shell_sld=8, solvent_sld=1, |
---|
| 342 | radius=45, thickness=25, length=340, |
---|
| 343 | theta=30, phi=15, |
---|
| 344 | radius_pd=.2, radius_pd_n=1, |
---|
| 345 | length_pd=.2, length_pd_n=1, |
---|
| 346 | thickness_pd=.2, thickness_pd_n=1, |
---|
| 347 | theta_pd=15, theta_pd_n=45, |
---|
| 348 | phi_pd=15, phi_pd_n=1, |
---|
| 349 | ) |
---|
| 350 | return 'core_shell_cylinder', pars |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | @model('ell') |
---|
| 354 | def ellipsoid(): |
---|
| 355 | pars = dict( |
---|
| 356 | scale=1, background=0, |
---|
| 357 | sld=6, solvent_sld=1, |
---|
| 358 | rpolar=50, requatorial=30, |
---|
| 359 | theta=30, phi=15, |
---|
| 360 | rpolar_pd=.2, rpolar_pd_n=1, |
---|
| 361 | requatorial_pd=.2, requatorial_pd_n=1, |
---|
| 362 | theta_pd=15, theta_pd_n=45, |
---|
| 363 | phi_pd=15, phi_pd_n=1, |
---|
| 364 | ) |
---|
| 365 | return 'ellipsoid', pars |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | @model('ell3') |
---|
| 369 | def triaxial_ellipsoid(): |
---|
| 370 | pars = dict( |
---|
| 371 | scale=1, background=0, |
---|
| 372 | sld=6, solvent_sld=1, |
---|
| 373 | theta=30, phi=15, psi=5, |
---|
| 374 | req_minor=25, req_major=36, rpolar=50, |
---|
| 375 | req_minor_pd=0, req_minor_pd_n=1, |
---|
| 376 | req_major_pd=0, req_major_pd_n=1, |
---|
| 377 | rpolar_pd=.2, rpolar_pd_n=1, |
---|
| 378 | theta_pd=15, theta_pd_n=45, |
---|
| 379 | phi_pd=15, phi_pd_n=1, |
---|
| 380 | psi_pd=15, psi_pd_n=1, |
---|
| 381 | ) |
---|
| 382 | return 'triaxial_ellipsoid', pars |
---|
| 383 | |
---|
| 384 | @model('sph') |
---|
| 385 | def sphere(): |
---|
| 386 | pars = dict( |
---|
| 387 | scale=1, background=0, |
---|
| 388 | sld=6, solvent_sld=1, |
---|
| 389 | radius=120, |
---|
| 390 | radius_pd=.2, radius_pd_n=45, |
---|
| 391 | ) |
---|
| 392 | return 'sphere', pars |
---|
| 393 | |
---|
| 394 | @model('lam') |
---|
| 395 | def lamellar(): |
---|
| 396 | pars = dict( |
---|
| 397 | scale=1, background=0, |
---|
| 398 | sld=6, solvent_sld=1, |
---|
| 399 | thickness=40, |
---|
| 400 | thickness_pd= 0.2, thickness_pd_n=40, |
---|
| 401 | ) |
---|
| 402 | return 'lamellar', pars |
---|
[8a20be5] | 403 | |
---|
| 404 | if __name__ == "__main__": |
---|
[87985ca] | 405 | main() |
---|