source: sasmodels/_sources/model/core_shell_cylinder.txt @ 68532f3

gh-pages
Last change on this file since 68532f3 was 68532f3, checked in by ajj, 8 years ago

Adding docs

  • Property mode set to 100644
File size: 5.1 KB
Line 
1.. _core-shell-cylinder:
2
3Core shell cylinder
4=======================================================
5
6Right circular cylinder with a core-shell scattering length density profile.
7
8=========== ======================================== ============ =============
9Parameter   Description                              Units        Default value
10=========== ======================================== ============ =============
11scale       Source intensity                         None                     1
12background  Source background                        |cm^-1|                  0
13core_sld    Cylinder core scattering length density  |1e-6Ang^-2|             4
14shell_sld   Cylinder shell scattering length density |1e-6Ang^-2|             4
15solvent_sld Solvent scattering length density        |1e-6Ang^-2|             1
16radius      Cylinder core radius                     |Ang|                   20
17thickness   Cylinder shell thickness                 |Ang|                   20
18length      Cylinder length                          |Ang|                  400
19theta       In plane angle                           degree                  60
20phi         Out of plane angle                       degree                  60
21=========== ======================================== ============ =============
22
23The returned value is scaled to units of |cm^-1|.
24
25
26The form factor is normalized by the particle volume.
27
28Definition
29----------
30
31The output of the 2D scattering intensity function for oriented core-shell
32cylinders is given by (Kline, 2006)
33
34.. math::
35
36    P(Q,\alpha) = {\text{scale} \over V_s} F^2(Q) + \text{background}
37
38where
39
40.. math::
41
42    F(Q) = &\ (\rho_c - \rho_s) V_c
43           {\sin \left( Q \tfrac12 L\cos\alpha \right)
44               \over Q \tfrac12 L\cos\alpha }
45           {2 J_1 \left( QR\sin\alpha \right)
46               \over QR\sin\alpha } \\
47         &\ + (\rho_s - \rho_\text{solv}) V_s
48           {\sin \left( Q \left(\tfrac12 L+T\right) \cos\alpha \right)
49               \over Q \left(\tfrac12 L +T \right) \cos\alpha }
50           { 2 J_1 \left( Q(R+T)\sin\alpha \right)
51               \over Q(R+T)\sin\alpha }
52
53and
54
55.. math::
56
57    V_s = \pi (R + T)^2 (L + 2T)
58
59and $\alpha$ is the angle between the axis of the cylinder and $\vec q$,
60$V_s$ is the volume of the outer shell (i.e. the total volume, including
61the shell), $V_c$ is the volume of the core, $L$ is the length of the core,
62$R$ is the radius of the core, $T$ is the thickness of the shell, $\rho_c$
63is the scattering length density of the core, $\rho_s$ is the scattering
64length density of the shell, $\rho_\text{solv}$ is the scattering length
65density of the solvent, and *background* is the background level.  The outer
66radius of the shell is given by $R+T$ and the total length of the outer
67shell is given by $L+2T$. $J1$ is the first order Bessel function.
68
69.. _core-shell-cylinder-geometry:
70
71.. figure:: img/core_shell_cylinder_geometry.jpg
72
73    Core shell cylinder schematic.
74
75To provide easy access to the orientation of the core-shell cylinder, we
76define the axis of the cylinder using two angles $\theta$ and $\phi$. As
77for the case of the cylinder, those angles are defined in
78:num:`figure #cylinder-orientation`.
79
80NB: The 2nd virial coefficient of the cylinder is calculated based on
81the radius and 2 length values, and used as the effective radius for
82$S(Q)$ when $P(Q) \cdot S(Q)$ is applied.
83
84The $\theta$ and $\phi$ parameters are not used for the 1D output. Our
85implementation of the scattering kernel and the 1D scattering intensity
86use the c-library from NIST.
87
88Validation
89----------
90
91Validation of our code was done by comparing the output of the 1D model to
92the output of the software provided by the NIST (Kline, 2006).
93:num:`Figure #core-shell-cylinder-1d` shows a comparison
94of the 1D output of our model and the output of the NIST software.
95
96.. _core-shell-cylinder-1d:
97
98.. figure:: img/core_shell_cylinder_1d.jpg
99
100    Comparison of the SasView scattering intensity for a core-shell cylinder
101    with the output of the NIST SANS analysis software. The parameters were
102    set to: *scale* = 1.0 |Ang|, *radius* = 20 |Ang|, *thickness* = 10 |Ang|,
103    *length* =400 |Ang|, *core_sld* =1e-6 |Ang^-2|, *shell_sld* = 4e-6 |Ang^-2|,
104    *solvent_sld* = 1e-6 |Ang^-2|, and *background* = 0.01 |cm^-1|.
105
106Averaging over a distribution of orientation is done by evaluating the
107equation above. Since we have no other software to compare the
108implementation of the intensity for fully oriented cylinders, we can
109compare the result of averaging our 2D output using a uniform
110distribution $p(\theta,\phi) = 1.0$.
111:num:`Figure #core-shell-cylinder-2d` shows the result
112of such a cross-check.
113
114.. _core-shell-cylinder-2d:
115
116.. figure:: img/core_shell_cylinder_2d.jpg
117
118    Comparison of the intensity for uniformly distributed core-shell
119    cylinders calculated from our 2D model and the intensity from the
120    NIST SANS analysis software. The parameters used were: *scale* = 1.0,
121    *radius* = 20 |Ang|, *thickness* = 10 |Ang|, *length* = 400 |Ang|,
122    *core_sld* = 1e-6 |Ang^-2|, *shell_sld* = 4e-6 |Ang^-2|,
123    *solvent_sld* = 1e-6 |Ang^-2|, and *background* = 0.0 |cm^-1|.
124
1252013/11/26 - Description reviewed by Heenan, R.
126
Note: See TracBrowser for help on using the repository browser.