1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | import numpy as np |
---|
5 | import pyopencl as cl |
---|
6 | |
---|
7 | from weights import GaussianDispersion |
---|
8 | from sasmodel import card, set_precision |
---|
9 | |
---|
10 | class GpuTriEllipse: |
---|
11 | PARS = {'scale':1, 'semi_axisA':35, 'semi_axisB':100, 'semi_axisC':400, 'sldEll':1e-6, 'sldSolv':6.3e-6, 'background':0, |
---|
12 | 'axis_theta':0, 'axis_phi':0, 'axis_psi':0} |
---|
13 | |
---|
14 | PD_PARS = ['semi_axisA', 'semi_axisB', 'semi_axisC', 'axis_theta', 'axis_phi', 'axis_psi'] |
---|
15 | |
---|
16 | def __init__(self, qx, qy, dtype='float32'): |
---|
17 | ctx,_queue = card() |
---|
18 | src, qx, qy = set_precision(open('Kernel/Kernel-TriaxialEllipse.cpp').read(), qx, qy, dtype=dtype) |
---|
19 | self.prg = cl.Program(ctx, src).build() |
---|
20 | self.qx, self.qy = qx, qy |
---|
21 | |
---|
22 | #buffers |
---|
23 | mf = cl.mem_flags |
---|
24 | self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) |
---|
25 | self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) |
---|
26 | self.res_b = cl.Buffer(ctx, mf.WRITE_ONLY, qx.nbytes) |
---|
27 | self.res = np.empty_like(self.qx) |
---|
28 | |
---|
29 | def eval(self, pars): |
---|
30 | |
---|
31 | _ctx,queue = card() |
---|
32 | self.res[:] = 0 |
---|
33 | cl.enqueue_copy(queue, self.res_b, self.res) |
---|
34 | semi_axisA, semi_axisB, semi_axisC, axis_theta, axis_phi, axis_psi = \ |
---|
35 | [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) |
---|
36 | for base in GpuTriEllipse.PD_PARS] |
---|
37 | |
---|
38 | semi_axisA.value, semi_axisA.weight = semi_axisA.get_weights(pars['semi_axisA'], 0, 10000, True) |
---|
39 | semi_axisB.value, semi_axisB.weight = semi_axisB.get_weights(pars['semi_axisB'], 0, 10000, True) |
---|
40 | semi_axisC.value, semi_axisC.weight = semi_axisC.get_weights(pars['semi_axisC'], 0, 10000, True) |
---|
41 | axis_theta.value, axis_theta.weight = axis_theta.get_weights(pars['axis_theta'], -90, 180, False) |
---|
42 | axis_phi.value, axis_phi.weight = axis_phi.get_weights(pars['axis_phi'], -90, 180, False) |
---|
43 | axis_psi.value, axis_psi.weight = axis_psi.get_weights(pars['axis_psi'], -90, 180, False) |
---|
44 | |
---|
45 | sum, norm, norm_vol, vol = 0.0, 0.0, 0.0, 0.0 |
---|
46 | size = len(axis_theta.weight) |
---|
47 | sub = pars['sldEll'] - pars['sldSolv'] |
---|
48 | |
---|
49 | real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 |
---|
50 | for a in xrange(len(semi_axisA.weight)): |
---|
51 | for b in xrange(len(semi_axisB.weight)): |
---|
52 | for c in xrange(len(semi_axisC.weight)): |
---|
53 | |
---|
54 | vol += semi_axisA.weight[a]*semi_axisB.weight[b]*semi_axisC.weight[c]*semi_axisA.value[a]*semi_axisB.value[b]*semi_axisC.value[c] |
---|
55 | norm_vol += semi_axisA.weight[a]*semi_axisB.weight[b]*semi_axisC.weight[c] |
---|
56 | |
---|
57 | for t in xrange(len(axis_theta.weight)): |
---|
58 | for i in xrange(len(axis_phi.weight)): |
---|
59 | for s in xrange(len(axis_psi.weight)): |
---|
60 | self.prg.TriaxialEllipseKernel(queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, |
---|
61 | real(sub), real(pars['scale']), real(semi_axisA.value[a]), real(semi_axisB.value[b]), |
---|
62 | real(semi_axisC.value[c]), real(axis_phi.value[i]), real(axis_theta.value[t]), real(axis_psi.value[s]), |
---|
63 | real(semi_axisA.weight[a]), real(semi_axisB.weight[b]), real(semi_axisC.weight[c]), real(axis_psi.weight[s]), |
---|
64 | real(axis_phi.weight[i]), real(axis_theta.weight[t]), np.uint32(self.qx.size), np.uint32(size)) |
---|
65 | |
---|
66 | norm += semi_axisA.weight[a]*semi_axisB.weight[b]*semi_axisC.weight[c]*axis_theta.weight[t]*axis_phi.weight[i]*axis_psi.weight[s] |
---|
67 | |
---|
68 | |
---|
69 | # if size > 1: |
---|
70 | # norm /= asin(1.0) |
---|
71 | cl.enqueue_copy(queue, self.res, self.res_b) |
---|
72 | sum = self.res |
---|
73 | if vol != 0.0 and norm_vol != 0.0: |
---|
74 | sum *= norm_vol/vol |
---|
75 | |
---|
76 | return sum/norm + pars['background'] |
---|
77 | |
---|
78 | |
---|
79 | |
---|
80 | |
---|
81 | |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | |
---|
105 | |
---|
106 | |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | |
---|