1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | import numpy as np |
---|
5 | import pyopencl as cl |
---|
6 | |
---|
7 | from weights import GaussianDispersion |
---|
8 | from sasmodel import card, set_precision, set_precision_1d, tic, toc |
---|
9 | |
---|
10 | |
---|
11 | class GpuCylinder(object): |
---|
12 | PARS = { |
---|
13 | 'scale':1,'radius':1,'length':1,'sldCyl':1e-6,'sldSolv':0,'background':0, |
---|
14 | 'cyl_theta':0,'cyl_phi':0, |
---|
15 | } |
---|
16 | PD_PARS = ['radius', 'length', 'cyl_theta', 'cyl_phi'] |
---|
17 | |
---|
18 | def __init__(self, qx, qy, dtype='float32'): |
---|
19 | |
---|
20 | #create context, queue, and build program |
---|
21 | ctx,_queue = card() |
---|
22 | src, qx, qy = set_precision(open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/Kernel-Cylinder.cpp').read(), qx, qy, dtype=dtype) |
---|
23 | self.prg = cl.Program(ctx, src).build() |
---|
24 | self.qx, self.qy = qx, qy |
---|
25 | |
---|
26 | #buffers |
---|
27 | mf = cl.mem_flags |
---|
28 | self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) |
---|
29 | self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) |
---|
30 | self.res_b = cl.Buffer(ctx, cl.mem_flags.READ_WRITE, self.qx.nbytes) |
---|
31 | self.res = np.empty_like(self.qx) |
---|
32 | |
---|
33 | def eval(self, pars): |
---|
34 | |
---|
35 | tic() |
---|
36 | _ctx,queue = card() |
---|
37 | self.res[:] = 0 |
---|
38 | cl.enqueue_copy(queue, self.res_b, self.res) |
---|
39 | radius, length, cyl_theta, cyl_phi = \ |
---|
40 | [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) |
---|
41 | for base in GpuCylinder.PD_PARS] |
---|
42 | |
---|
43 | #Get the weights for each |
---|
44 | radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 10000, True) |
---|
45 | length.value, length.weight = length.get_weights(pars['length'], 0, 10000, True) |
---|
46 | cyl_theta.value, cyl_theta.weight = cyl_theta.get_weights(pars['cyl_theta'], -np.inf, np.inf, False) |
---|
47 | cyl_phi.value, cyl_phi.weight = cyl_phi.get_weights(pars['cyl_phi'], -np.inf, np.inf, False) |
---|
48 | |
---|
49 | #Perform the computation, with all weight points |
---|
50 | sum, norm, norm_vol, vol = 0.0, 0.0, 0.0, 0.0 |
---|
51 | size = len(cyl_theta.weight) |
---|
52 | sub = pars['sldCyl'] - pars['sldSolv'] |
---|
53 | |
---|
54 | real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 |
---|
55 | #Loop over radius, length, theta, phi weight points |
---|
56 | for i in xrange(len(radius.weight)): |
---|
57 | for j in xrange(len(length.weight)): |
---|
58 | |
---|
59 | vol += radius.weight[i]*length.weight[j]*pow(radius.value[i], 2)*length.value[j] |
---|
60 | norm_vol += radius.weight[i]*length.weight[j] |
---|
61 | |
---|
62 | for k in xrange(len(cyl_theta.weight)): |
---|
63 | for l in xrange(len(cyl_phi.weight)): |
---|
64 | self.prg.CylinderKernel(queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, real(sub), |
---|
65 | real(radius.value[i]), real(length.value[j]), real(pars['scale']), |
---|
66 | real(radius.weight[i]), real(length.weight[j]), real(cyl_theta.weight[k]), |
---|
67 | real(cyl_phi.weight[l]), real(cyl_theta.value[k]), real(cyl_phi.value[l]), |
---|
68 | np.uint32(self.qx.size), np.uint32(size)) |
---|
69 | |
---|
70 | norm += radius.weight[i]*length.weight[j]*cyl_theta.weight[k]*cyl_phi.weight[l] |
---|
71 | |
---|
72 | |
---|
73 | # if size > 1: |
---|
74 | # norm /= math.asin(1.0) |
---|
75 | cl.enqueue_copy(queue, self.res, self.res_b) |
---|
76 | sum = self.res |
---|
77 | if vol != 0.0 and norm_vol != 0.0: |
---|
78 | sum *= norm_vol/vol |
---|
79 | |
---|
80 | print toc()*1000, self.qx.shape[0] |
---|
81 | return sum/norm+pars['background'] |
---|
82 | |
---|
83 | class OneDGpuCylinder(object): |
---|
84 | PARS = { |
---|
85 | 'scale':1,'radius':1,'length':1,'sldCyl':1e-6,'sldSolv':0,'background':0, |
---|
86 | 'bolim':0, 'uplim':90 |
---|
87 | } |
---|
88 | PD_PARS = ['radius', 'length'] |
---|
89 | |
---|
90 | def __init__(self, q, dtype='float32'): |
---|
91 | |
---|
92 | #create context, queue, and build program |
---|
93 | ctx,_queue = card() |
---|
94 | trala = open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/OneDCyl_Kfun.cpp').read()+"\n"+open('Kernel/Kernel-OneDCylinder.cpp').read() |
---|
95 | src, self.q = set_precision_1d(trala, q, dtype=dtype) |
---|
96 | self.prg = cl.Program(ctx, src).build() |
---|
97 | |
---|
98 | #buffers |
---|
99 | mf = cl.mem_flags |
---|
100 | self.q_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.q) |
---|
101 | self.res_b = cl.Buffer(ctx, mf.WRITE_ONLY, q.nbytes) |
---|
102 | self.res = np.empty_like(self.q) |
---|
103 | |
---|
104 | def eval(self, pars): |
---|
105 | |
---|
106 | _ctx,queue = card() |
---|
107 | radius, length = \ |
---|
108 | [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) |
---|
109 | for base in OneDGpuCylinder.PD_PARS] |
---|
110 | |
---|
111 | #Get the weights for each |
---|
112 | radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 10000, True) |
---|
113 | length.value, length.weight = length.get_weights(pars['length'], 0, 10000, True) |
---|
114 | |
---|
115 | #Perform the computation, with all weight points |
---|
116 | sum, norm, vol = 0.0, 0.0, 0.0, |
---|
117 | sub = pars['sldCyl'] - pars['sldSolv'] |
---|
118 | |
---|
119 | real = np.float32 if self.q.dtype == np.dtype('float32') else np.float64 |
---|
120 | #Loop over radius, length, theta, phi weight points |
---|
121 | for r in xrange(len(radius.weight)): |
---|
122 | for l in xrange(len(length.weight)): |
---|
123 | self.prg.OneDCylKernel(queue, self.q.shape, None, self.q_b, self.res_b, real(sub), |
---|
124 | real(length.value[l]), real(radius.value[r]), real(pars['scale']), |
---|
125 | np.uint32(self.q.size), real(pars['uplim']), real(pars['bolim'])) |
---|
126 | cl.enqueue_copy(queue, self.res, self.res_b) |
---|
127 | sum += radius.weight[r]*length.weight[l]*self.res*pow(radius.value[r],2)*length.value[l] |
---|
128 | vol += radius.weight[r]*length.weight[l] *pow(radius.value[r],2)*length.value[l] |
---|
129 | norm += radius.weight[r]*length.weight[l] |
---|
130 | |
---|
131 | if vol != 0.0 and norm != 0.0: |
---|
132 | sum *= norm/vol |
---|
133 | |
---|
134 | return sum/norm + pars['background'] |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | |
---|
154 | |
---|
155 | |
---|
156 | |
---|
157 | |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | |
---|