source: sasmodels/Models/code_coreshellcyl_f.py @ a7684e5

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a7684e5 was a953943, checked in by HMP1 <helen.park@…>, 10 years ago

The Core-Shell isn't working :(

  • Property mode set to 100644
File size: 4.0 KB
Line 
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3
4
5import ctypes
6from ctypes import c_int, c_double, c_void_p
7import numpy as np
8import pyopencl as cl
9from pyopencl import mem_flags as mf
10
11from weights import GaussianDispersion
12from sasmodel import card, set_precision, set_precision_1d, tic, toc
13
14class GpuCoreShellCylinder(object):
15    PARS = {'scale':1, 'radius':1, 'thickness':1, 'length':1, 'core_sld':1e-6, 'shell_sld':-1e-6, 'solvent_sld':0,
16            'background':0, 'axis_theta':0, 'axis_phi':0}
17    PD_PARS = ['radius', 'length', 'thickness', 'axis_phi', 'axis_theta']
18
19    def __init__(self, qx, qy, dtype='float32', cutoff=1e-5):
20        #create context, queue, and build program
21        ctx,_queue = card()
22        src, qx, qy = set_precision(open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/Kernel-CoreShellCylinder_f.cpp').read(), qx, qy, dtype=dtype)
23        self.prg = cl.Program(ctx, src).build()
24        self.qx, self.qy = qx, qy
25        self.cutoff = cutoff
26
27        self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx)
28        self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy)
29        self.res_b = cl.Buffer(ctx, mf.READ_WRITE, self.qx.nbytes)
30        self.res = np.empty_like(self.qx)
31
32    def eval(self, pars):
33        tic()
34
35        ctx,queue = card()
36        real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64
37        loops, loop_lengths = make_loops(pars, dtype=self.qx.dtype)
38        loops_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=loops)
39        loops_l = cl.LocalMemory(len(loops.data))
40
41        self.prg.CoreShellCylinderKernel(queue, self.qx.shape, None,
42                        self.qx_b, self.qy_b, self.res_b,
43                        loops_b, loops_l, real(self.cutoff),
44                        real(pars['scale']), real(pars['background']),
45                        real(pars['shell_sld']-pars['solvent_sld']),
46                        real(pars['core_sld']-pars['shell_sld']),
47                        *[np.uint32(pn) for pn in loop_lengths])
48
49        cl.enqueue_copy(queue, self.res, self.res_b)
50        print toc()*1000, self.qx.shape[0]
51
52        return self.res
53
54class CPUCoreShellCylinder(GpuCoreShellCylinder):
55    def __init__(self, qx, qy, dtype='float32', cutoff=1e-5):
56        self.qx, self.qy = [np.ascontiguousarray(v,'d') for v in qx,qy]
57        self.cutoff = cutoff
58        self.res = np.empty_like(self.qx)
59        self.dll = ctypes.CDLL('Kernel/coreshellcylinder.so')
60        self.fn = self.dll['CoreShellCylinderKernel']
61        self.fn.argtypes = [
62            c_void_p, c_void_p, c_void_p, c_int,
63            c_void_p, c_double, c_double, c_double, c_double, c_double,
64            c_int, c_int, c_int, c_int, c_int
65        ]
66    def eval(self, pars):
67        loops, loop_lengths = make_loops(pars, dtype=self.qx.dtype)
68        self.fn(self.qx.ctypes.data, self.qy.ctypes.data, self.res.ctypes.data, len(self.qx),
69            loops.ctypes.data, self.cutoff, pars['scale'], pars['background'],
70            pars['shell_sld']-pars['solvent_sld'], pars['core_sld']-pars['shell-sld'], *loop_lengths)
71
72        return self.res
73
74
75def make_loops(pars, dtype='double'):
76    # 0.2 ms on sparkle to form the final loops
77    radius, length, thickness, axis_theta, axis_phi = \
78       [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma'])
79         for base in GpuCoreShellCylinder.PD_PARS]
80    parts = [
81        radius.get_weights(pars['radius'], 0, 10000, True),
82        length.get_weights(pars['length'], 0, 10000, True),
83        thickness.get_weights(pars['thickness'], 0, 10000, True),
84        axis_theta.get_weights(pars['axis_theta'], -np.inf, np.inf, False),
85        axis_phi.get_weights(pars['axis_phi'], -np.inf, np.inf, False),
86        ]
87    # Make sure that weights are normalized to peaks at 1 so that
88    # the tolerance term can be used properly on truncated distributions
89    loops = np.hstack((v,w/w.max()) for v,w in parts)
90    #loops = np.hstack(parts)
91    loops = np.ascontiguousarray(loops.T, dtype).flatten()
92    return loops, [len(p[0]) for p in parts]
Note: See TracBrowser for help on using the repository browser.