[dbb0048] | 1 | #!/usr/bin/env python |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | |
---|
| 4 | import numpy as np |
---|
| 5 | import pyopencl as cl |
---|
[473183c] | 6 | |
---|
[dbb0048] | 7 | from weights import GaussianDispersion |
---|
[a42fec0] | 8 | from sasmodel import card, set_precision |
---|
[dbb0048] | 9 | |
---|
| 10 | class GpuCoreShellCylinder(object): |
---|
| 11 | PARS = {'scale':1, 'radius':1, 'thickness':1, 'length':1, 'core_sld':1e-6, 'shell_sld':-1e-6, 'solvent_sld':0, |
---|
| 12 | 'background':0, 'axis_theta':0, 'axis_phi':0} |
---|
| 13 | PD_PARS = ['radius', 'length', 'thickness', 'axis_phi', 'axis_theta'] |
---|
| 14 | |
---|
| 15 | def __init__(self, qx, qy, dtype='float32'): |
---|
| 16 | #create context, queue, and build program |
---|
| 17 | ctx,_queue = card() |
---|
[ca6c007] | 18 | src, qx, qy = set_precision(open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/Kernel-CoreShellCylinder.cpp').read(), qx, qy, dtype=dtype) |
---|
[dbb0048] | 19 | self.prg = cl.Program(ctx, src).build() |
---|
| 20 | self.qx, self.qy = qx, qy |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #buffers |
---|
| 24 | mf = cl.mem_flags |
---|
| 25 | self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) |
---|
| 26 | self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) |
---|
| 27 | self.res_b = cl.Buffer(ctx, mf.WRITE_ONLY, qx.nbytes) |
---|
| 28 | self.res = np.empty_like(qx) |
---|
| 29 | |
---|
| 30 | def eval(self, pars): |
---|
| 31 | |
---|
| 32 | _ctx,queue = card() |
---|
[a42fec0] | 33 | self.res[:] = 0 |
---|
| 34 | cl.enqueue_copy(queue, self.res_b, self.res) |
---|
[dbb0048] | 35 | radius, length, thickness, axis_phi, axis_theta = [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) |
---|
| 36 | for base in GpuCoreShellCylinder.PD_PARS] |
---|
| 37 | |
---|
| 38 | radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 10000, True) |
---|
| 39 | length.value, length.weight = length.get_weights(pars['length'], 0, 10000, True) |
---|
| 40 | thickness.value, thickness.weight = thickness.get_weights(pars['thickness'], 0, 10000, True) |
---|
| 41 | axis_phi.value, axis_phi.weight = axis_phi.get_weights(pars['axis_phi'], -90, 180, False) |
---|
| 42 | axis_theta.value, axis_theta.weight = axis_theta.get_weights(pars['axis_theta'], -90, 180, False) |
---|
| 43 | |
---|
| 44 | sum, norm, norm_vol, vol = 0.0, 0.0, 0.0, 0.0 |
---|
| 45 | size = len(axis_theta.weight) |
---|
| 46 | |
---|
| 47 | real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 |
---|
| 48 | for r in xrange(len(radius.weight)): |
---|
| 49 | for l in xrange(len(length.weight)): |
---|
[1726b21] | 50 | for th in xrange(len(thickness.weight)): |
---|
| 51 | |
---|
| 52 | vol += radius.weight[r]*length.weight[l]*thickness.weight[th]*pow(radius.value[r]+thickness.value[th],2)\ |
---|
| 53 | *(length.value[l]+2.0*thickness.value[th]) |
---|
| 54 | norm_vol += radius.weight[r]*length.weight[l]*thickness.weight[th] |
---|
| 55 | |
---|
| 56 | for at in xrange(len(axis_theta.weight)): |
---|
| 57 | for p in xrange(len(axis_phi.weight)): |
---|
[dbb0048] | 58 | |
---|
| 59 | self.prg.CoreShellCylinderKernel(queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, |
---|
| 60 | real(axis_theta.value[at]), real(axis_phi.value[p]), real(thickness.value[th]), |
---|
| 61 | real(length.value[l]), real(radius.value[r]), real(pars['scale']), |
---|
| 62 | real(radius.weight[r]), real(length.weight[l]), real(thickness.weight[th]), |
---|
| 63 | real(axis_theta.weight[at]), real(axis_phi.weight[p]), real(pars['core_sld']), |
---|
| 64 | real(pars['shell_sld']), real(pars['solvent_sld']),np.uint32(size), |
---|
| 65 | np.uint32(self.qx.size)) |
---|
[1726b21] | 66 | |
---|
[dbb0048] | 67 | norm += radius.weight[r]*length.weight[l]*thickness.weight[th]*axis_theta.weight[at]\ |
---|
| 68 | *axis_phi.weight[p] |
---|
| 69 | |
---|
| 70 | #if size>1: |
---|
| 71 | # norm /= math.asin(1.0) |
---|
[a42fec0] | 72 | cl.enqueue_copy(queue, self.res, self.res_b) |
---|
| 73 | sum = self.res |
---|
[dbb0048] | 74 | if vol != 0.0 and norm_vol != 0.0: |
---|
| 75 | sum *= norm_vol/vol |
---|
| 76 | |
---|
| 77 | return sum/norm + pars['background'] |
---|