
SINE2020 and SasView Roadmap

Work on SasView modernization

DMSC

www.europeanspallationsource.se
March 2016

SINE2020

• Two positions working full time on SINE2020
between Jan 1, 2016 until Dec 31, 2017:

 Wojtek and Piotr

2

3

SasView Roadmap vs. SINE2020 goals

• Roadmap

Post-CCIV, 4.0
• Move models to new independent

Sasmodels package
• Enable OpenCL GPU utilization for models
• Separation of the model calculation code

from the GUI
• Begin work on integrating SESANS into the

SasView GUI
Post-CCV, 4.w
• Results reporting refactoring
• Project save refactoring
Post-CCVI, 4.x
• Finish UI and code separation + testing
• Preferences/startup config refactoring
Post-CCX, 5.x
• UI refactor work

• SINE2020 (2016-2017)

• Code modularization

• New API

• New GUI

• Optimization of
algorithms for real time
analysis

• Extension with SASFit
models

4

SasView Roadmap vs. SINE2020 goals

• Roadmap

Post-CCIV, 4.0
• Move models to new independent

Sasmodels package
• Enable OpenCL GPU utilization for models
• Separation of the model calculation code

from the GUI
• Begin work on integrating SESANS into the

SasView GUI
Post-CCV, 4.w
• Results reporting refactoring
• Project save refactoring
Post-CCVI, 4.x
• Finish UI and code separation + testing
• Preferences/startup config refactoring
Post-CCX, 5.x
• UI refactor work

• SINE2020 (2016-2017)

• Code modularization

• New API

• New GUI

• Optimization of
algorithms for real time
analysis

• Extension with SASFit
models

5

SasView Roadmap vs. SINE2020 goals

• Roadmap

Post-CCIV, 4.0
• Move models to new independent

Sasmodels package
• Enable OpenCL GPU utilization for models
• Separation of the model calculation code

from the GUI
• Begin work on integrating SESANS into the

SasView GUI
Post-CCV, 4.w
• Results reporting refactoring
• Project save refactoring
Post-CCVI, 4.x
• Finish UI and code separation + testing
• Preferences/startup config refactoring
Post-CCX, 5.x
• UI remake work

• SINE2020 (2016-2017)

• Code modularization

• New API

• New GUI

• Optimization of
algorithms for real time
analysis

• Extension with SASFit
models

6

SasView Roadmap vs. SINE2020 goals

• Roadmap

Post-CCIV, 4.0
• Move models to new independent

Sasmodels package
• Enable OpenCL GPU utilization for models
• Separation of the model calculation code

from the GUI
• Begin work on integrating SESANS into the

SasView GUI
Post-CCV, 4.w
• Results reporting refactoring
• Project save refactoring
Post-CCVI, 4.x
• Finish UI and code separation + testing
• Preferences/startup config refactoring
Post-CCX, 5.x
• UI refactor work

• SINE2020 (2016-2017)

• Code modularization

• New API

• New GUI

• Optimization of
algorithms for real time
analysis

• Extension with SASFit
models

7

SasView Roadmap vs. SINE2020 goals

• Roadmap

Post-CCIV, 4.0
• Move models to new independent

Sasmodels package
• Enable OpenCL GPU utilization for models
• Separation of the model calculation code

from the GUI
• Begin work on integrating SESANS into the

SasView GUI
Post-CCV, 4.w
• Results reporting refactoring
• Project save refactoring
Post-CCVI, 4.x
• Finish UI and code separation + testing
• Preferences/startup config refactoring
Post-CCX, 5.x
• UI refactor work

• SINE2020 (2016-2017)

• Code modularization

• New API

• New GUI

• Optimization of
algorithms for real time
analysis

• Extension with SASFit
models

8

Code refactoring

• Separate calculation from GUI

– SasCalc can be used as a standalone module

– No SasGUI dependencies in SasCalc

– No SasModels dependencies in SasGUI

• Need to define how to use SasCalc modules (agree
on API)

• Write example scripts and API documentation

9

Proposed refactoring
geographical changes

10

Module dependencies

• Currently :
- SasCalc depends on some methods in

SasGUI

- SasModels is used by SasGUI

• Proposed:
- SasCalc dependent only on

SasModels

- SasView using SasCalc methods
exclusively

- CLI access to all the SasCalc
functionality and models

11

Module dependencies

12

Using SasCalc as a module

 from sas.sascalc.dataloader.loader import Loader
 from sas.sascalc.pr.invertor import Invertor

 loader = Loader()
 test_data = loader.load("sphere_80.txt")

 pr = Invertor()

 # Set data
 pr.x = test_data.x
 pr.y = test_data.y

 # Perform inversion and show graph
 x, y = pr.invert()

 import matplotlib.pyplot as plt
 plt.plot(x, y)
 plt.show()

Need to (re)define how the calculators are to be used – agree on API for them.

13

GUI modernization

• With SasGUI refactored it is possible to work exclusively on
the GUI part of SasView

• Proposed rewrite using PyQt
– Platform consistency - dialogs look and behave the same across all

platforms
– Professional (more mature) technology
– Long term maintainability
– Ease of development (Qt designer)
– Clean separation of UI and code
– Signals connected to slots automatically
– Inherent MVC pattern in Qt simplifying data management
– Native thread support
– SINE2020 requirement for interoperability with other Qt based codes

(Mantid, BornAgain)

14

Quick dialog prototyping

15

SasFit integration

• Idea – reuse a large set of SasFit fitting functions in
SasModels

• Create setup similar for SasModel – conversion Wiki,
compare.sh script, etc.

• Investigate possible automation of the conversion or
its parts

• Examine SasFit structure factor methods with the OZ
equation

• In collaboration with PSI

SasFit integration

16

17

Proposed timeframe

