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The misfolding of proteins and peptides can lead to fibrillar
aggregates which are often termed amyloid fibrils.1 These are
characterized by a cross-beta structure, with �-strands and
polypeptide backbones running perpendicular to the fibril axis,
which is coincident with the hydrogen bonding direction. Several
types of amyloid fibrils have been shown by high resolution
electron microscopy to comprise assemblies of individual twisted
�-sheets,2-5 of which there are two typesstapes or ribbons.6,7

The two are distinguished by the presence or absence of a hollow
core in the fibril. The twist arises from packing constraints of
the side groups of the residues within the �-strands.7

Helical diffraction theory, as later applied to interpret the
structure of DNA,8 was first applied to calculate the scattering
from an R-helical polypeptide, assuming point atoms on a
regular helix.9 The structure factor was also calculated.9

Expressions for the form factor of helical filaments with
negligible cross-section10 and also with finite cross-section11

have been provided, and also for pairs of rigid coaxial helical
filaments.10 However, to my knowledge, the form factor of
helical ribbons has not previously been reported. Such an
expression may be useful when attempting to calculate the
diffraction pattern from a twisted �-sheet, in the case that atomic
coordinates are not available. The form factor may also be useful
in the analysis of small-angle scattering data from other
biological systems such as microtubules (for which form factors
using atomic coordinates are available12,13) or synthetic helical
macromolecules such as ladder polymers14 or peptide am-
phiphile fibrils.15

The form factor of a twisted ribbon of known scattering
density only has three parameters, the radius, width and pitch
(or equivalently helix angle) (Figure 1). All of these parameters
can be estimated from electron microscopy images. However,
often TEM cannot provide in situ evidence on solution structure,
for which a technique such as small-angle scattering is ap-
propriate. For short peptides, the �-sheet width may be a
multiple of the �-strand length, which can be estimated from
the number of residues incorporated in the strand. In addition
to having a small number of input parameters, the form factor
presented herein also has a simple analytical form that is readily
computed for anisotropic or isotropically averaged configura-
tions.

The form factor of a single helical ribbon of infinitesimal
thickness and uniform scattering density F can be obtained as
follows. The coordinates of a point on the surface are (Rcosφ,
Rsinφ, Rφtanψ + h).16 The variables are defined in Figure 1.
Here h is a variable along the ribbon axis z, φ is the rotation
angle around z and ψ is a helical twist angle. The amplitude
factor using Cartesian coordinates is then

F(q))F∫ exp[i(qxR cos φ+ qyR sin φ+qz(Rφ tan ψ+ h)] dr

(1)

Here q is the wavevector. The ribbon is a two-dimensional
object in three-dimensional space, and the integral can be
evaluated using polar coordinates (φ, h). Then dr ) dφ dh.
Additionally, using polar coordinates in the same ribbon-fixed
axis system for q ) (q sin θ cos �, q sin θ sin �, q cos θ) we
obtain

F(q, θ, �))F∫∫ exp[i{qR sin θ cos (�- φ)+

q cos θ R(φ tan ψ+ h)}] dφ dh (2)

This integral can be evaluated as follows (here and in the
following unimportant numerical prefactors are omitted). Taking
first the integral over h, for a single turn of the ribbon, and
allowing for centrosymmetry, we obtain

∫Rφ tan ψ

Rφ tan ψ+δ
exp[i(qh cosθ)] dh

) [sin(qh cos θ)
q cos θ ]h)Rφ tan ψ

h)Rφ tan ψ+δ
- i[cos(qh cos θ)

q cos θ ]h)Rφ tan ψ

h)Rφ tan ψ+δ

) 2 cos(bφ+ c) sin c
q cos θ

+ 2i sin(bφ+ c) sin c
q cos θ

) 2 sin c
q cos θ

exp[i(bφ+ c)])X(q, θ, φ) (3)

Here b ) qcosθRtanψ and c ) (δ/2)q cos θ.

The amplitude factor for m repeats of a helical ribbon in a
fixed orientation is then given by

F(q, θ, �))F∫0

m.2π
exp[i(qR sin θ cos(�- φ)+

qRφ cos θ tan ψ)]X(q, θ, φ) dφ (4)

This is the amplitude factor of a single helical ribbon in a
fixed orientation (φ, ψ, θ). The integral over φ may not be
determined analytically in a straightforward manner, however
this equation is readily evaluated numerically. The form factor
may be calculated as I(q,θ,�) ) F(q,θ,�)F*(q,θ,�) using eq 4.
The experimentally measured intensity in dilute solution will
be related to I(q,θ,�) by a multiplicative constant, depending
on incident intensity, polarization etc.

Figure 2 presents examples of the anisotropic form factor
from aligned helical ribbons. The circular symmetry in the (qx,
qy) plane reflects the projected symmetry along the axis of the
helical ribbon. The scattering in the (qx, qz) and (qy, qz) planes
is found to be dominated by intensity in layer lines at qz )
nπ/p, the intensity being more concentrated as m, i.e., the
number of helical repeats, increases. This can be understood as
follows. The integral in eq 4 can be evaluated using the fact
that9
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Figure 1. Bottom: Single infinitesimally thick helical ribbon showing
definition of variables.16 Top: Scattering vector q and associated polar
angles in the ribbon-fixed reference frame.
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∫0

2π
exp[ia cos(�- φ)+ inφ] dφ) 2πinJn(a) exp(in�) (5)

Here a ) qR sin θ. Using this relationship we obtain, for
q cos θ ) qz ) nπ/p

Fn(q, θ, �))F2πinJn(qR sin θ)
2 sin c
q cos θ

exp(ic) exp(in�) (6)

This is the form factor derived for a helix9 convoluted with the
term 2 sin c exp(ic)/[q cos θ] contained in X(q,θ,φ) which results
from the width of the ribbon.

The oscillations in the amplitude factor in Figure 2 result
from the Bessel functions in Eq. 6, those on the n ) 0 layer
line are maximal at q⊥ ) 0 (here q⊥ is qx or qy) as is the zeroth
order Bessel function, those for n * 0 have a minimum at q⊥

) 0 as do the Jn(z) values with n ) 1, 2,....

In practice, it would be very difficult to measure the form
factor of aligned helical ribbons in a sufficiently dilute solution
(although a suitable contrast variation experiment in neutron
scattering might help). Therefore it is of more interest to examine
the isotropically averaged form factor. Assuming that the
intensity is totally concentrated on the layer lines, we take the
isotropic average as the sum of the isotropically averaged
intensities on the layer lines:

I(q))F2 Σ
n)-∞

∞ ∫0

π/2
FnFn

* sin � d�

)F2 ∑
n)-∞

∞

i2n∫
0

π/2 sin2(δ
2

q′z)
q′z

2
Jn

2(q′⊥ R sin �) sin � d� (7)

Here q⊥ ) �(q2 - n2π2/p2), q′ ⊥ ) q⊥ cos � - qz sin � and q′z
) q⊥ sin � + qz cos �. The latter terms result from the averaging
around the angle � defined in Figure 2c.

In practice, the sum in Eq. 7 only has to extend over the
layer lines in the q range accessed, which can readily be
determined from the position of the nth layer line at qz ) nπ/p.
Figure 3 contains SAXS intensity profiles calculated using the
approximate formula, Eq. 7, along with calculated form factor
profiles for a hollow tube (Vide infra). Figure 3 shows the form
factor calculated with terms up to n ) 2. In fact the sum is
convergent, and indeed the total intensity is generally dominated
by the n ) 0 contribution. The periodicity of the oscillations in
the form factor depends mainly on R, but is modulated by w
and p. The scaling behavior at large q is approximately I(q) ∼
q-2, depending somewhat on w and p. This scaling behavior
can be rationalized on the basis of the following analysis.

Equations 4-7 are valid for p ≡ 2πb > 2δ. In the limiting
case p ) 2δ, we have an infinitesimal cylindrical tube (length
P) for which X(q, θ, φ) ) 1 and the isotropically averaged form
factor is given exactly by

Figure 2. Examples of anisotropic form factors obtained for an aligned ribbon with R ) 35 Å, w ) 20 Å, p ) 100 Å and m ) 20 repeats. (a) qx,
qy plane (qy vertical, scale in Å-1), (b) qx, qz plane (qz vertical, scale in Å-1). The intensity scales are logarithmic. One quadrant of the scattering
pattern is shown in each case. (c) Definition of angle � used in isotropic averaging of layer line intensities.
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I(q))F2∫0

π (sin(1
2

qp cos θ)
1
2

qp cos θ )2

J0
2(qR sin θ) sin θ dθ (8)

This is analogous to the dominant n ) 0 term in eq 7, although
in the case of ribbons the form factor also depends on the ribbon
width, via δ.

In order to understand the scaling behavior with q more
clearly, one may take the limit of the scattered intensity from
an infinite cylinder in the case p f ∞. Following Porod,17 the
scattering from the cross-section (R dependence) can be
separated from the axial factor (p dependence) The resulting
scaling is I(q) ∼ q-2 for an infinite flat sheet or I(q) ∼q-1 for
a rod with infinitesimal cross-section.17 The total intensity in
eq 8 for an infinite tube (which is a wrapped sheet) scales as
q-2 at large q. This behavior is confirmed numerically for finite
but large p (Figure 3). For the helical ribbon, a similar scaling
behavior is observed for large p, modulated slightly by w or p.
Comparison of the form factors for ribbons and tubes, indicates
that the first minimum for the ribbons is in a different position
to that for tubes with the same value of R, and depends on w
and p. This may be useful in distinguishing ribbons from tapes,
even in the case of significant polydispersity which will reduce
the amplitude of form factor oscillations. Indeed the amplitude
of the form factor oscillations is greatly reduced for ribbons,
depending strongly on w and p (in contrast to the case of tubes).
Form factor calculations are also useful beyond calculations of
dilute solution scattering, entering into expressions for the
structure factor for instance in random phase approximation

calculations.18 Equation 7 can be generalized to allow for
polydispersity in radius by a further integral over an appropriate
radius distribution function in the usual way.19

In summary, expressions are provided for the form factor of
helical ribbons. An exact expression is provided for the form
factor an oriented ribbon. For a large number of helical repeats,
the intensity is concentrated on layer lines. This facilitates the
calculation of an approximate expression for the form factor
for an isotropically averaged ensemble of ribbons. The form
factor oscillation period is controlled mainly by the fibril radius.
The intensity at high q scales approximately as q-2 depending
on pitch p and width w, this being similar to the scaling observed
for infinitesimal hollow tubules. The form factors provided are
expected to be useful in the analysis of small-angle scattering
from various types of twisted macromolecules, especially beta-
sheet amyloid fibrils.
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Figure 3. Isotropically averaged form factors for helical ribbons (top,
Eq. 7 with terms up to n ) 2) and hollow tubes (bottom). Particle
dimensions (in Å) are indicated.
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