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Small-Angle X-ray Scattering from Helical Maeromolecules* 
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An earlier calculation of the intensity of small-angle X-ray scattering from helical filaments is extended 
to give an expression for the intensity from helical macromolecules with a finite cross section. The 
results are in quite good agreement with an experimental scattering curve for a solution of DNA 
molecules. 

Introduction 

Small-angle X-ray scattering is often useful for study- 
ing the overall form and dimensions of biological ma- 
cromolecules. Although this information about the ma- 
cromolecule can also be obtained from a complete 
determination of the crystal structure, small-angle X- 
ray scattering can be applied to macromolecules which 
cannot be crystallized or for which a complete structure 
analysis has not been carried out. Also. information 
about the overall configuration of the macromolecule 
can be obtained more easily by small-angle scattering 
than by a crystal structure determination. Moreover, 
small-angle X-ray scattering permits molecules to be 
studied when they are actually in suspension. Sus- 
pended molecules at times can have a configuration 
which is different from the molecular shape in the crys- 
tal. 

Helical configurations are important in the study of 
biological macromolecules. One of us has recently cal- 
culated the small-angle X-ray scattering from dilute 
suspensions of randomly oriented helical filaments 
(Schmidt, 1970). To simplify the calculation, only fila- 
ments were considered. However, a more realistic cal- 
culation would take account of the finite cross section 
of the helixes. 

Below, we describe a method by which the previous 
calculation can be extended to give the scattered inten- 
sity from macromolecules made up of two identical 
coaxial helixes with finite cross sections. 

* Work supported by the National Science Foundation and 
by the Department of Defense Project Themis. 

Calculation of the scattered intensity 

Except for having a finite cross section, the molecules 
will be assumed to satisfy the same assumptions as in 
the earlier calculation. The electron density of the 
molecules will be considered to be uniform, and the 
particles will be assumed to be identical, independent, 
and randomly oriented. The measured scattering will 
be taken to be the scattered intensity averaged over all 
particle orientations. Under these assumptions, the 
scattering from the system of particles will be propor- 
tional to the scattering from a single particle. Since we 
will be concerned only with the angular dependence 
of the scattered intensity, we will calculate only the 
scattering from a single particle. 

With the above assumptions, the scattered intensity 
is the average, over all particle orientations, of the 
square of the structure factor for a helical macromol- 
ecule. 

For a single helical filament with a given orientation, 
the structure factor Fs(h,~, 5 u) is given by (Schmidt, 
1970, equation (7) with ~0 = 0) as 

o o  

Fs(h,c~, ~u)= ~ exp {hl(zr/2- ~U)F,,(h,c 0 
n = - - o o  

exp {i(H/2) (h cos a + 2zrn/P)} 
where 

h =4zr2 -1 sin (0/2) 

F,(h, a)= J,,(hR sin a)_sin [(H/2)(hcos c~ + 2mffP)] 
(H/2)(h cos c~ + 2~zn/P) 

(1) 

and where 2 is the X-ray wavelength, 0 is the scattering 
angle, ~ is the angle between the helix axis and the vector 
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s-s0, s and So are unit vectors in the directions of the 
scattered and incident rays, qJ is an azimuth angle 
which gives the orientation of the helix about a ref- 
erence axis parallel to the helix axis, J,,(x) is the Bessel 
function of the first kind and order n, H is the length 
of the helix, P is the helix period, and R is its radius. 
The helix thus consists of HIP turns. The ratio H/P, 
which need not be an integer, will be assumed to be 
large, and the calculation will be carried out only 
for a helix which can be considered infinitely long. 

A helix with a finite cross section will be constructed 
from an assembly of coaxial helical filaments with the 
same length but with different azimuth angles ~ and 
radii r. The structure factor F(h,e,~,) for a particle 
consisting of two identical coaxial helixes with a finite 
cross section then can be written 

where 

E,,(h,e, ~U)=exp { i n ( n / 2 - e ) / 2 -  re/2- ~ )  
x exp {i(H/2)(h cos e +  2nn/P)} 

1~ rF"(h'°Odr 
= 

The scattered intensity I(h) is the intensity averaged 
over all particle orientations. Therefore 

I(h)=~-~ 0 d ~  de sin o~F(h,e, ~)F*(h,e ,  ~ ) .  (4) 

In (4), the values of F(h, e, ~)  and its complex conjugate 
F*(h, e, 7Q are obtained from (3). The intensity is nor- 
malized so that I (0 )=  1. 

I 
R 002(0  

o + + o + +  ldO 
F(h,e, ~ )  = ......... aR . . . . . . . . . . . . . . . . .  

f 
R (802(r) 

2 r dr \ D(r,O)dO 
aR dOl (r) 

where r and 0 are polar coordinates in a plane perpen- 
dicular to the helix axis; r, aR, 02(r), and 01(r) define 
the form of the helix cross section in a plane perpendic- 
ular to the helix axis; (p is the angle by which one helix 
is rotated with respect to the other; and D(r, O) des- 
cribes the density of filaments in the plane of the helix 
cross section. 

For simplicity, 01, 02, and the density D(r, O) will be 
assumed to be constant, with 01=0 and 02=09. The 
particle cross section is shown in Fig. 1. For this cross 
section, by substitution of (1) in (2), F(h, e, ~)  can be 
written 

F(h, e, ~ ) =  ~ E,,(h, o~, ~u) s!n_(nco/2) 
,,=_~ (no)/2) 

x cos (n~o/2)G,(h,e) (3) 

Fig. 1. A diagram of the particle cross section. Cross-hatching 
indicates the area occupied by the two helixes. 

(2) 

The integrand in (4) is a double sum. However, in 
the integration over ~u, all terms in this double sum 
average to zero unless the terms are independent of ~. 
The double sum therefore reduces to a single sum. If 
e0 = 1 and e, = 2 for n > 1, (4) can be written 

I (h )=  ~ e, cos 2 (rap/2) sin2 (no)/2) 
. = o  ( r i b / E )  2 

x ½ I~ sin o~ do~ [Gn(h,oO]2 . 

For a long helix, F,,(h,e), and consequently G,(h,~), 
will be appreciably different from zero only when h 
cos ~+2nn/P=O. Thus, for an infinitely long helix, 

n oo sin2(n°)/2) [g,(hR,a)] 2 (5) 
I (h )=  ~-H._~ e, cos 2 (n~0/2) 

(n09/2) z 
where 

f g.(hR, a)=2R-2(1-a2) -1 dr r J . (hr l /1-q .  2) 
aR 

and where 
b = 2nR/P 

q, = nb/hR hR > nb 
q, = 1 hR < nb 

Although (5) is written as an infinite series, the number 
of terms actually is finite, since all terms are zero for 
n >_ hR/b. 

Numerical  calculations 

For evaluation of (5), the g,(hR,a) were expanded in 
the power series 

o o  

g,(hR,a)= ~ ck,(hR) Sk,(a) (6) 
k=0 
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where 

ck,,(hR)= (-  l)k(hRl/l-q2")"+2", 
k! (n +k).t 2 "+2k 

211 - a  "+2k +2] 
Sk,,(a) - 

(1-a2)(n+ 2k + 2) " 

A Fortran IV program was written for calculating 
I(h) from (5) and (6) on an IBM 360-60 computer. 
Intensity values were obtained for 0-1 _< hR <_ 15.0 with 
an increment of 0.1 for different values of the param- 
eters a, b, co, and ~0. Copies of the program are avail- 
able from the authors. 

Discussion 

The calculated intensities were compared with an ex- 
perimental scattering curve for a suspension of DNA 
molecules (Bram & Beeman, 1971). The parameters of 
the DNA molecule (Mahler & Cordes, 1966) suggest 
that q~ is about 2.2 radians and that b is roughly equal 
to 2. In almost all of the calculations, therefore, (p and 
b were near 2.2 radians and 2, respectively. 

Comparison of the experimental and calculated 
curves definitely indicated that fits could be obtained 
only when 0.8 _ co __ 1.5. 

For a given choice of a, b, ~0 and co, the outer radius 
R was found by multiplying I(hR) and hR by the con- 
stants which gave the best fit of the calculated and 
theoretical experimental curves. 

The parameter a was found to determine the ratio 
of the intensity of the first subsidiary maximum to the 
zero-angle intensity. (For filaments, a =  1.0) In the 
earlier calculation of the intensity from helical fila- 
ments with dimensions corresponding to those of the 
DNA molecule (Schmidt, 1970, Fig. 8), the intensity 
of the first subsidiary maximum of the calculated curve 
is higher than the measured intensity when the inner 
parts of the curves are made to coincide. Trials with 
several values of a soon showed clearly that a must be 
less than 0.1 to fit the data. Therefore, in the last part 
of the calculation, a was set equal to zero. 

Our calculations thus indicate that the theoretical 
curve which fits the data must correspond to a helical 
molecule with a solid center. This result agrees with 
current models of the DNA B structure. (Mahler & 
Cordes, 1966). 

While the number of parameters is so large that an 
evaluation of the sensitivity of the results to changes in 
the parameters is somewhat subjective, our tests sug- 
gest that 0_<a_<0.1, 0.8_<o)<_1.2, 1 .8<b_2.2,  and 
2.0_< ~0_< 2.4. 

Fig. 2 shows the calculated curve which best fits the 
data. For the computed curve, R = 11-5 A, a =  0, ~0 = 
2.26 radians, co = 1.00 radians, and b = 2.13. 

The agreement between the experimental and calcul- 
ated curves can be considered quite satisfying, espe- 
cially when consideration is taken of the fact that our 
model of a uniform-density helix is a great simplifica- 

tion of the actual DNA structure. Agreement between 
the calculated and measured curves should not be 
expected in the angular region beyond the first two 
subsidiary maxirna, since the detailed molecular struc- 
ture undoubtedly affects this part of the curve. 

In Fig. 2, the experimental and calculated curves 
differ somewhat in the neighborhood of 2 x 10 .2 radi- 
ans. In this angular region the scattering is changing 
from the h -1 dependence which is observed in the inner 
part of the scattering curve and which is expected for 
an infinitely long rod in this portion of the curve. For 
scattering angles greater than about 2 x 10 -2 radians, 
the dimensions of the cross section no longer can be 
considered negligible and the intensity near 2 x 10 -2 
radians is determined primarily by the form of the cross 
section. The difference between the calculated and ex- 
perimental curves in this region of angles probably 
results from the fact that the assumed dimensions and 
electron density of the cross section do not correspond 
sufficiently closely to the actual values in DNA. Fur- 
ther calculations would be required before more de- 
tailed statements could be made about the reasons for 
these deviations. 
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Fig. 2. Curve 1 represents the scattered intensity for a D N A  
solution (Bram & Beeman,  1971). Curve 2 is calculated 
f rom equat ion (5) for R = I 1 . 5  A, a = 0 ,  (,o=2.26 radians,  
co = 1-00 radians,  b = 2.13. 



O. A L L A N  P R I N G L E  AND PAUL W. S C H M I D T  293 

With relatively little difficulty, our equations could 
be generalized to permit intensity calculations for other 
cross-sectional shapes and for cross sections with non- 
uniform electron density. 

When q)= co = zc and a = 0, the helix becomes a cylin- 
der with uniform electron density. Then in (5) only 
the term for n = 0  is different from zero, and (5) re- 
duces to the expression for the intensity from a very 
long uniform cylinder [Fedorov & Aleshin, 1966, equa- 
tion (10)]. 

We thank W. W. Beeman for his helpful suggestions 
and advice. 
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A High-Temperature X-ray Diffraction Study of the NiO- Li20 System 
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A crystallographic study of the system .24- "3+ .4- Nh_2xNlx Llx O has been carried out. The crystal structure of 
the material in the range 0<x<0-4  at room temperature and up to 1000°C has been studied. The 
principal coefficients of thermal expansion and the phase diagram are given. The structural rhombo- 
hedral ~ face-centred cubic transition temperature of NiO has been determined. 

Introduction 

Verwey, Haaijman, Romeijn & van Oosterhout (1950) 
have shown that when lithium oxide is substitutionally 
inserted into nickel oxide, a solid solution has been 
formed. The substitution is accompanied by the oxida- 
tion of an equivalent amount of the transition metal 
to the trivalent state. Thus the formula may be written 
as NI~2+~ ",1-2x Ni3+ L i + x  x .---c~ Concerning the system of oxides, 
only structural studies at room temperature seem to 
have been reported (Brownlee & Mitchell, 1952; 
Goodenough, Wickham & Croft, 1958; Bade, Bronger 
& Klemm, 1965; Bronger, Bade & Klemm, 1964; Gal- 
lezot, Degraix & Gravelle, 1969). 

This communication deals with an X-ray room- and 
high-temperature study, up to 1000°C, of materials 
with compositions 0 < x_< 0.4. 

Experimental 

Lithium-doped nickel oxide was prepared by sintering 
mixtures of nickel oxide and lithium peroxide (Li202) at 
1000°C in closed Pt-crucibles to prevent excessive 
losses of lithium and of oxygen. The nickel oxide was 
prepared by thermal decomposition of doubly crystal- 
lized nickel sulphate (Merck p.a.) and by annealing the 
decomposition product at l l00°C in oxygen (Geel, 
Morlotti & Pizzini, 1970). The lithium content of the 
NiO obtained in this way was less than 30 ppm. The 
nickel-to-oxygen ratio was 1.005. For the determination 
of the crystallographic transition temperature and ther- 

mal expansion of pure NiO, a sample obtained from 
Schlesinger (purity 99.99 %, NiO ratio 0.999) has also 
been used. Lithium has been determined byflame emis- 
sion spectroscopy and by X-ray diffraction measure- 
ments (Toussaint & Vos, 1968). Compositions 

"2+ "3+ "+ Nlj_2xNl x LI x O with 0 < x < 0 . 4  have been prepared 
by this method. 

The room-temperature (22°C) X-ray measurements 
were carried out on a Philips diffractometer, using 
nickel-filtered Cu K0¢ (2= 1.5418 A) radiation. Lattice 
parameters were calculated by means of the 2T1, 
321, 211-310 and 332 reflexions for the rhombo- 
hedral structure, and the 420 and 422 reflexions for 
the cubic structure, with platinum as internal standard. 
All reflexions were well resolved into 0q and a2. The 
reflexions were recorded using a xenon-filled proportion- 
al counter. The usual scanning speed was ~° 20.min -1. 

The X-ray patterns for the lattice expansion meas- 
urements and crystallographic transformation temper- 
atures were carried out on a Rigaku high-temperature 
X-ray diffractometer attachment (air atmosphere) in 
combination with an automatic temperature controller. 
Sample temperatures were determinated with a Pt-  
Pts7Rh13 thermocouple, calibrated with platinum, 
using the data of Lang & Franklin (1964). Subsequent 
temperature calibrations have shown that the temper- 
atures are correct to + 4 °C near 200°C, and to + 8 °C 
near 1000°C. To exclude errors in the temperature 
measurements owing to a difference in thermal con- 
ductivity between NiO and Pt (calibration standard), 
the crystallographic transition temperature of NiO has 
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