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Small-angle scattering (SAS) intensities observed experimentally are often characterized by the presence of
successive power-law regimes with various scattering exponents whose values vary from -4 to -1. This usually
indicates multiple fractal structures of the sample characterized by different size scales. The existing models
explaining the crossover positions (that is, the points where the power-law scattering exponent changes) involve
only one contrast parameter, which depends solely on the ratio of the fractal sizes. Here, a model that describes
SAS from a multi-phase system with a few contrast parametersis described, and it is shown that the crossover
position depends on the scattering length density of each phase. The Stuhrmann contrast variation method is
generalized and applied to experimental curves in the vicinity of the crossover point beyond the Guinier region.
The contrast variation is applied not to the intensity itself but to the model parameters, which can be found
by fitting the experimental data with the suggested interpolation formula. The model supplements the existing
two-phase models and gives the simple condition of their inapplicability: if the crossover point depends on the
contrast then a two-phase model is not relevant. The developed analysis allows one to answer the qualitative
question of whether one fractal ‘absorbs’ another one or they are both immersed in a surrounding homogeneous
medium like a solvent or solid matrix. The models can be applied to experimental SAS data where the absolute
value of the scattering exponent of the first power-law regime is higher than that of the subsequent second
power-law regime, that is, the scattering curve is ‘convex’near the crossover point. As is shown, the crossover
position can be very sensitive to contrast variation, whichinfluences significantly the length of the fractal range.

I. INTRODUCTION

One of the most effective and reliable experimental method
for investigating fractal structures [1, 2] of materials at
nanoscales is small-angle scattering [3–5] that measures the
differential cross section of an irradiated sampleversusthe
scattering vector magnitudeq [q = (4π/λ) sin θ, whereθ is
half the scattering angle, andλ is the wavelength of the inci-
dent radiation]. SAS allows one to obtain the edges of fractal
region in reciprocal space and the fractal dimension [6–10].
The borders of linear dependance of the intensity in a double
logarithmic scale shows the edges of the fractal region, and
its slopeτ , being the power-law exponent of SAS intensity,
yields the fractal dimension:I(q) ∝ q−τ , where

τ =

{

D, for mass fractals,
6−Ds, for surface fractals.

(1)

Here the notationsD andDs are adopted for the fractal di-
mension of mass and surface fractals, respectively. The value
of the fractal dimension can lie within the ranges0 < D < 3
and2 < Ds < 3 for mass and surface fractals, respectively.
These restrictions lead to a simple physical interpretation of
experimental data: ifτ < 3 then the measured sample is a
mass fractal, if3 < τ < 4 then it is a surface fractal. Note
that this rule of thumb should be used with caution, because
the appearance of the power-law behaviour can arise not only
due to the fractal structure of the irradiated sample. For in-
stance, the scattering intensity from spatially and rotationally
uncorrelated identical disks yields the exponent equal to−2.
Another example is an ‘occasional’ power-law behaviour in a
quite narrow momentum range owing to polydispersity. This

is a general and well-known problem of the small-angle scat-
tering method, which cannot give us a well-defined and unam-
biguous structure of samples in real space. In order to resolve
this general ambiguity and reveal the sample structure in real
space, one needs to involve additional information from other
experimental techniques or by knowing the conditions under
which the system has been created.

SAS data (X-ray or neutron) often show a succession of
power-law regimes whose scattering exponents are taking ar-
bitrarily values from−4 to −1 [11–17]. On a double log-
arithmic scale, the scattering intensity looks like connected
straight-line segments. This type of behavior is usually asso-
ciated with two-phase multilevel structures and the structural
characteristics are revealed most often by using Beaucage
model [18]. However, experimental SAS papers have reported
the dependence of the scattering intensities on the scatter-
ing length densities of surrounding solvent or solid matrix, in
which the studied structures are immersed. In particular, the
crossover positionsqc (that is, the points where the power-law
scattering exponent changes) can depend on the contrast value
[19]. This indicates a multi-phase structure of the sample,and
thus a method capable of extracting the structural properties
about each phase is needed.

Let us explain the problem in more detail. The multi-level
structures suggested by Beaucage [18] assumes that particles
composing a multi-level system are complex structures them-
selves within their size-scale. An example is a mass fractal
with fractal dimensionD1 composed of the structural units,
where each of them is another mass fractal with the dimen-
sionD2. Then the scattering intensity on a double logarithmic
scale shows the ‘knee’ behaviour, where one straight line with
the slope−D1 passes into another straight line with the slope
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−D2 at the crossover pointqc. This model istwo-phase, that
is, it assumes that primary units of the above construction are
homogeneous with a constant scattering length density and all
the construction is embedded in a solid matrix with another
constant scattering length density. Hence, there is only one
contrast parameter (that is, the difference between the scat-
tering length densities), and the scattering intensity is propor-
tional to the squared value of the contrast, but its form remains
the same with the contrast variation. In particular, the value of
the crossover position is independent of the contrast valuebut
determined only by the ratio of the fractal sizes.

On the other hand, multi-phase materials are ubiquitous in
nature, and one can expect that the presence of more than two
phases could be even more relevant. In a recent paper [20], the
crossover between Porod and mass fractal regimes has been
explained for multi-phase systems. Here, we extend these re-
sults and develop a model which describe SAS frommulti-
phasesystem witha few contrast parameters. As is known,
the method of contrast variation [21] is successfully used in
the X-ray and neutron scattering for investigating multi-phase
systems. This powerful method studies the intensity at zero
momentum transfer and radii of gyration, and thus it is appli-
cable only in the Guinier region. However, the Guinier region
often lies beyond the resolution of experimental device. We
suggest an extension of this method and show how it can be
applied to experimental curves in the vicinity of the crossover
pointbeyond the Guinier region. The contrast variation is ap-
plied to the model parameters, which can be found by fitting
the experimental data with the simple interpolation formula.

There are essential differences between the model sug-
gested here and the Beaucage model. First, the structure of
material in real space is assumed to be different. In con-
trast to the real-space structure of the Beaucage model de-
scribed above, we consider two possible different structures
(see Fig. 3 below):
Type I. A fractal with the scattering length densityρ2 and di-
mensionD2 is embedded in a bigger fractalwith the density
ρ1 and dimensionD1, and they are immersed in a homoge-
neous medium (solvent or solid matrix) with densityρ0.
Type II . Two non-overlapping fractalswith the dimensions
D1 andD2 and scattering length densitiesρ1 andρ2 are im-
mersed in a homogeneous medium with densityρ0.
Second, the suggested model is applicable if the scatteringin-
tensities are ‘convex’ in the vicinity of the crossover point on a
double logarithmic scale, that is, a steeper line at small values
of momentum transfer passes into a flatter line at the crossover
point qc. This means that the fractal with higher power-law
exponent dominates at small values of momentum, while its
contribution to the scattering intensity is suppressed at large
values of momentum. Here we give a recipe how in practice
to distinguish between the structures of typeI andII and de-
termine the densitiesρ1 andρ2 by using the contrast variation
method.

We confirm our conclusions by doing numerical calcula-
tions with randomly oriented and uniformly distributed three-
phase systems containing balls and mass fractals, embedded
in a solvent or solid matrix. The basic model for the numerical
calculations of mass fractals is the generalized Cantor fractals

with controllable fractal dimension [22, 23].
The paper is organized as follows. In Sec. II, we introduce

some notations and emphasize some important issues about
SAS from two- and three-phase systems. In Sec. III we derive
a simple fitting formula describing SAS from multi-phase sys-
tems and show how the contrast variation method can be used
in the vicinity of the crossover point. The crossover position
is estimated through the model parameters, and the obtained
results are discussed. In Sec. IV we show numerically that the
developed model describes well the transition from Porod to
mass fractal regimes.

II. SMALL-ANGLE SCATTERING FROM TWO- AND
THREE-PHASE SYSTEMS

Let us consider a sample, consisting of microscopic scat-
terers with the scattering lengthbj . Then the differential
cross section of elastic scattering is given by [5]dσ/dΩ =
|At(q)|2, where

At(q) ≡
∫

V ′

ρs(r)e
iq·rd3r (2)

is the total scattering amplitude andV ′ is the total volume
irradiated by the incident beam. Here, the scattering length
densityρs(r) is defined with the help of Dirac’sδ-function:
ρs(r) =

∑

j bjδ(r−rj), whererj are the spatial positions of
the scatters.

Note that a constant shift of the scattering length density
in the overall sample is important only for very small values
of wave vectorq, unattainable with the SAS technique. This
property is convenient to exclude the ‘background’ densityof
the sample.

A. Two-phase systems

We consider first a two-phase sample composed of rigid
homogeneous objects with the scattering length densityρ im-
mersed in a solid matrix of the densityρ0. Therefore, by sub-
tracting the ‘background’ densityρ0, we can consider the sys-
tem as if the objects were ‘frozen’ in a vacuum and had the
density∆ρ = ρ− ρ0. It is called scattering contrast. Besides,
the objects are supposed to be of the same volume and shape,
and their spatial positions and orientations are uncorrelated.
Then the scattering intensity (that is, the cross section per unit
volume of the sample) is given by

I(q) ≡ 1

V ′

dσ

dΩ
= n|∆ρ|2V 2

〈

|F (q)|2
〉

, (3)

wheren is the object concentration in the sample,V is the
volume of each object, andF (q) is the normalized scattering
amplitude of the object

F (q) =
1

V

∫

V

e−iq·rdr, (4)

obeying the conditionF (0) = 1. It is also called the nor-
malized form factor. The brackets〈· · · 〉 stand for the mean
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value given by the ensemble averaging over all orientationsof
the objects. If the probability of any orientation is the same,
then the mean value can be calculated by averaging over all
directionsn of the momentum transferq = qn, that is, by
integrating over the solid angle in the spherical coordinates
qx = q cosϕ sinϑ, qy = q sinϕ sinϑ andqz = q cosϑ

〈f(qx, qy, qz)〉 ≡
1

4π

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕf(q, ϑ, ϕ). (5)

If the object is a mass fractal of the total lengthL, com-
posed ofp small structural units of the sizel, then its normal-
ized form factor can be estimated qualitatively by the formula

〈|Fm(q)|2〉 ≃



















1, q . 2π/L,

(qL/2π)−D, 2π/L . q . 2π/l,

1

p
(ql/2π)−4, q & 2π/l,

(6)

see Fig. 1a. Herep is of order(L/l)D in accordance with
the definition of the fractal dimension, obeying the condition
0 < D < 3.

A surface fractal can be constructed, say, from balls with
different radiir, whose centers are spatially uncorrelatedin-
side the fractal. If the radii are taken at random with the dis-
tribution proportional to1/rDs+1 at smallr and the parameter
Ds obeys the condition2 < Ds < 3 then one can show that
Ds is indeed the fractal dimension of the total ball surfaces.
Certainly, in practice, the restrictionl 6 r 6 L should be im-
posed, and the fractal properties appear only within this range.
Now the qualitative estimating formula takes the form

〈|Fs(q)|2〉 ≃











1, q . 2π/L,

(qL/2π)Ds−6, 2π/L . q . 2π/l,

(L/l)Ds−6(ql/2π)−4, q & 2π/l,
(7)

see Fig. 1b. We emphasize that hereL is of order of the largest
radius of the balls but not the total fractal length, andl is the
smallest radius. Equations (6) and (7) explicitly show thatthe
scattering intensity in momentum space is characterized by
three main ranges: Guinier atq . 2π/L, fractal at2π/L .
q . 2π/l and Porod atq & 2π/l. Note that a simple three-
dimensional set like a ball does not exhibit fractal behaviour
at all; here the Porod range follows the Guinier range. Indeed,
the fractal region ‘collapses’ if we put formallyl = L in either
of the relations (6) and (7).

We make a few remarks about the scattering intensities (6)
and (7). First, the intensity in the Guinier range is actually
parabolic: I(q) ≃ I(0)(1 − R2

gq
2/3). This parabolic be-

haviour of the intensity is ignored in the above estimations
for the sake of simplicity. Second, the relation (6) is appli-
cable at large momentumq & 2π/l if the minimal distance
between the structural units composing the mass fractal is of
order of their size. Otherwise, if the size is much smaller than
the minimal distance then there exists a plateau (‘shelf’) be-
tween the end of the fractal range and the beginning of the
Porod range [22]. Third, the fractal region of the mass fractal
(Fig. 1a) is determined by the maximal and minimal distances
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FIG. 1. A schematic representation of SAS from mass (a) and surface
(b) fractals. The intensities show the three main ranges: Guinier
(at smallq), fractal (at intermediateq) and Porod (at highq). The
characteristic lengthsL andl are explained in the text.

between the centers of the structural units, while the fractal
region of the surface fractal (Fig. 1b) is determined by the
biggest and smallest radii present in the fractal. For a mass
fractal in the fractal region, the interparticle spatial correla-
tions between the structural units play an important role, and
the fractal behaviour can be understood by analogy with op-
tics [23], while for a surface fractal, the spatial correlations
between the structural units are not important for its fractal
properties.

B. Three-phase systems

The three-phase systems consist generically from homoge-
neous structures with the scattering length densitiesρ1 andρ2,
immersed in a homogeneous medium with the densityρ0. By
subtracting the ‘background’ densityρ0, we arrive at the same
structural units with the contrastsρ1−ρ0 andρ2−ρ0, respec-
tively, in a vacuum (see Fig. 2). Effectively, this procedure
allows us to reduce the three-phase system to the two-phase
system.

Let us calculate the scattering intensity from a macroscopic
number of the objects shown in Fig. 2, whose spatial posi-
tions and orientations are supposed to be uncorrelated. In ac-
cordance with the general relation (2), the intensity is given
by I(q) = n〈|A(q)|2〉, whereA(q) andn are the scattering



4

FIG. 2. A three-phase system composed of a homogeneous region
1 with the scattering length densityρ1, which ‘absorbs’ a region 2
with the densityρ2. They together are embedded in a homogeneous
medium (solvent or solid matrix) with the densityρ0. The three-
phase system is equivalent to the two-phase one in a vacuum with
the contrast densitiesρ1 − ρ0 andρ2 − ρ0, respectively.

amplitude of the objects and their concentration in the sam-
ple, respectively. The amplitude can be written down with the
help of the normalized form factorsF1(q) andF2(q) and vol-
umesV1 andV2 of the space regions 1 and 2, respectively,
shown on the left in Fig. 2. Indeed, it is given by a sum
A(q) = A1out(q)+A2(q), whereA2(q) = (ρ2−ρ0)V2F2(q)
is the scattering amplitude of the region 2, andA1out(q) =
(ρ1 − ρ0)[V1F1(q)− V2F2(q)] is the amplitude of the region
that remains after excluding the region 2 from 1. Finally, we
derive

I(q) = n
〈∣

∣(ρ1 − ρ0)V1F1(q) + (ρ2 − ρ1)V2F2(q)
∣

∣

2〉
. (8)

This expression can be written in the form [20]

I(q) = I(0)〈|αF1(q) + (1− α)F2(q)|2〉, (9)

where we denoteI(0) = nV 2
1 (ρ1 − ρ0)

2α−2 and introduce
by definition the ‘contrast parameter’

α ≡
(

1 +
ρ2 − ρ1
ρ1 − ρ0

V2

V1

)

−1

. (10)

This dimensionless parameter determines the relative contri-
butions of the corresponding form factors, and thus it controls
completely the form of the resulting scattering intensity,while
the average scattering length density of the object(ρ1−ρ0)/α
determines the intensity at zero momentum.

III. THE INTERPOLATING FORMULA AND THE
GENERALIZED METHOD OF CONTRAST VARIATION

Let us analyze and further simplify the general relation (8)
[or (9)] for the scattering intensity from the three-phase sys-
tem. Suppose that the systems 1 and 2 shown in Fig. 2 are
mass or surface fractals, obeying the power-law behaviour in
the corresponding fractal ranges in accordance with Eq. (6)or
(7). We assume that the following conditions are satisfied:
(a) their fractal ranges in momentum space overlap;

(b) the correspondingpower-law exponents are quite different
(recall that the exponents are directly connected to the fractal
dimensions by the relation (1);
(c) the dimensionless parameterα given by Eq. (10) obeys the
condition|1−α| ≪ 1 whenτ1 > τ2 or |α| ≪ 1 whenτ2 > τ1.
Let us choose the first case without loss of generality.

Then the scattering intensity exhibits the ‘knee’ convex
structure on a double logarithmic scale. Indeed, at low mo-
mentum the first term in the r.h.s. of Eq. (9) dominates due to
the condition(c). On the other hand, the first term is propor-
tional toF1, which decrease faster thanF2 according to the
condition(b). At the crossover pointqc, the both terms be-
come approximately equal, and at high values of momentum
the second terms dominates.

The physical picture can be simplified further if we notice
that the interference terms, proportional to〈F1(q)F

∗

2 (q)〉 +
〈F ∗

1 (q)F2(q)〉, can be neglected, provided one of the am-
plitude dominates. This obvious statement can easily be
proved even rigorously by means of the Cauchy-Schwarz
inequality |〈F1(q)F

∗

2 (q)〉|2 6 〈|F1(q)|2〉〈|F1(q)|2〉, valid
for arbitrary q. Indeed, if for example, the second ampli-
tude still dominates〈|F1|2〉 ≪ 〈|F2|2〉 then |〈F1F

∗

2 〉| 6
√

〈|F1|2〉
√

〈|F2|2〉 ≪ 〈|F2|2〉. Neglecting the interference
terms in Eq. (8) yields

I(q) = (ρ1−ρ0)
2nV 2

1 〈|F1(q)|2〉+(ρ2−ρ1)
2nV 2

2 〈|F2(q)|2.
(11)

Although this approximation is valid beyond the crossover po-
sition, the ‘crossover range’ where the amplitudes are of the
same order of magnitude always looks rather small on a dou-
ble logarithmic scale. Therefore, we can use Eq. (11) even
quite close to the crossover pointqc. We show numerically in
the next section that omitting the interference term is indeed a
very good approximation.

Finally, the condition(a) allows us to use the power-law be-
haviour of form factors in the fractal regimes given by Eqs. (6)
and (7), and we derive from Eq. (11)

I(q) =
(ρ1 − ρ0)

2nV 2
1

(qL1/2π)τ1
+

(ρ2 − ρ1)
2nV 2

2

(qL2/2π)τ2
, (12)

where the exponentsτ1 and τ2 are given by Eq. (1). This
is the interpolation formula for the scattering intensity from
a macroscopic number of objects of type ‘fractal inside frac-
tal’, the typeI described in Introduction (see the left panel in
Fig. 3).

One can consider a macroscopic number of non-
overlapping fractals with concentrationsn1 andn2, which all
are spatially uncorrelated (system of typeII shown on the right
panel in Fig. 3). The scattering intensity for this type of sys-
tem can be obtained in the same manner as Eq. (12)

I(q) = (ρ1−ρ0)
2n1V

2
1 〈|F1(q)|2〉+(ρ2−ρ0)

2n2V
2
2 〈|F2(q)|2.

(13)
Finally, we have in the particular case when the both regions
are in the scattering fractal regimes

I(q) =
(ρ1 − ρ0)

2n1V
2
1

(qL1/2π)τ1
+

(ρ2 − ρ0)
2n2V

2
2

(qL2/2π)τ2
. (14)
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L1
L2

L2
L2

L1

(a) Type I

(b) Type II

FIG. 3. Generic three-phase system of typeI and II , described in
detail in Introduction (see page 2). (a) The typeI structure is shown
on the left panel: the region 2 is embedded in the region 1. The
sample consists of a macroscopic number of these spatially uncor-
related structures, which are embedded in a solvent or solidmatrix
(right). The number of objects 1 and 2 is equal and hence theircon-
centrations over the sample coincide. (b) The typeII structures: the
regions 1 and 2 do not overlap and their positions are uncorrelated
in the sample. The concentrations of objects 1 and 2 are different in
general.

Equations (12) and (14) are very similar to each other, except
for the density dependence in the second term. This difference
can be used to distinguish between the typesI andII experi-
mentally.

The first and the second terms in the expression for scat-
tering intensity [Eq. (11) or (13)] are of the same order of
magnitude in the vicinity of the crossover point, and, there-
fore, equating these terms yields the crossover position. Note
that the form factors (6) and (7) contain all the qualitativere-
gions in the intensity curve: the Guinier, fractal and Porod
regions, and thus this curve together with Eq. (11) or (13) al-
lows us to obtain the crossover position for all the types of
transitions: Guinier-fractal, Guinier-Porod, fractal-fractal and
fractal-Porod. For the fractal-fractal transition one canuse di-
rectly Eqs. (12) and (14) and obtain

qc ≃ 2π

(

δ
Lτ1
1

Lτ2
2

)1/(τ2−τ1)

, (15)

whereδ is the dimensionless ‘contrast parameter’

δ =
V 2
2

V 2
1

×















(ρ2 − ρ1)
2

(ρ1 − ρ0)2
, for typeI

(ρ2 − ρ0)
2

(ρ1 − ρ0)2
n2

n1
, for typeII .

(16)

Certainly, for the typeI structure (see Fig. 3), this parameter
is connected simply with the ‘contrast parameter’α given by
Eq. (10) by the relationδ = (1− α)2/α2.

The parameterδ plays an important role, because it deter-
mines the relative ‘weights’ of the squared normalized form
factors in Eqs. (11) and (13) [and correspondingly Eqs. (12)
and (14) in the fractal ranges]. As a consequence, it governs
the form of the scattering intensity. Note that the suggested
model works only ifδ ≪ 1 and simultaneouslyτ1 > τ2 or
inverselyδ ≫ 1 andτ1 < τ2. Otherwise only one form factor
dominates for all values of the momentum and there is no tran-
sition on the scattering curve at all. Within the model, one can
obtain only the ‘convex’ behaviour near the transition point
on a double logarithmic scale.

The both approximations for the scattering intensities (12)
and (14) can be written in the form

I(q) =
a1
qτ1

+
a2
qτ2

, (17)

where we put by definition

a1 = (2π/L1)
τ1n1V

2
1 (ρ1 − ρ0)

2, (18)

a2 = (2π/L2)
τ2V 2

2 ×
{

n1(ρ2 − ρ1)
2, for typeI ,

n2(ρ2 − ρ0)
2, for typeII ,

(19)

and the exponentsτ1 andτ2 are related to the corresponding
fractal dimensions by Eq. (1).

One can prepare a number of samples, which differ only in
the densityρ0 of solvent or solid matrix, and measure their
SAS intensities; this is the method of contrast variation, ini-
tially suggested by Stuhrmann [21]. Fitting formula (17) in
conjunction with equations (18) and (19) suggests the exten-
sion of this method when it is applied not for the scattering
intensity itself but for the coefficientsa1 anda2. Indeed, fit-
ting each intensity curve with Eq. (17) yields the values of
dimensionsD1 andD2 (through the exponentsτ1 andτ2) and
the values of these coefficients at given values ofρ0. Since√
a1 ∼ |ρ1 − ρ0|, one can find the value ofρ1 as the con-

trast match point in the plot
√
a1 versusρ0 and determine the

value ofn1V
2
1 /L

τ1
1 as well.A structure of the type II exhibits

the similar dependence of the coefficienta2, and the values of
densityρ2 andn1V

2
1 /L

τ1
1 can be found the same way.If a2 is

independent ofρ0, we deal with a structure of the type Iand
hardly can extract more information than the contrast value
|ρ2 − ρ1| itself unless other methods are used.

Very often a priori information about the fractal system un-
der investigation is known, mainly from other experimental
techniques or by knowing the conditions under which the sys-
tem has been created. One can then use the found coefficients
like n1V

2
1 /L

τ1
1 to obtain the unknown feature. For example,

if the concentrationn1 is known from a sample preparation,
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(b)

s
2L2

m = 2m = 1

r
0r0r0

L2 sL2

m = 0
(a)

R
1

L2

FIG. 4. (a) The2D projection of zero, first and second iterations of
the generalized Cantor fractal. Here we chooseβs = 1/3. (b) A
specific structure of typeI (see Fig. 2): the Cantor mass fractal of the
densityρ2 (region2) is embedded in a ball of the densityρ1 (region
1).

the sizeL1 of the region 1 can be estimated from the border
of the Guinier range (see Fig. 1). Then the fractal volumeV1

can be calculated as well.
Note that the coefficientsa1 anda2 is given by the asymp-

totics of the functionsqτ1I(q) andqτ2I(q), respectively, be-
yond the crossover regime. Therefore, their values can be
found from a Kratky-like plot on a double logarithmic scale
(see Fig. 6 below).

IV. AN EXAMPLE: POROD TO MASS FRACTAL
TRANSITION

In order to confirm the above results, we consider an ‘ex-
actly solvable’ three-phase system of typeI (see Fig. 2): a
mass fractal of the densityρ2 (region2) embedded in a ball
of the densityρ1 (region1). A ball of radiusR1 can be con-
sidered as the limiting case of surface fractal with surfacedi-
mensionDs1 = 2. This specific structure of typeI is shown
in Fig. 4. In the rangeq & 2π/R1, the scattering inten-
sity of ball is characterized by the Porod exponent, equal to
τ1 = 6 −Ds1 = 4. Therefore, the scattering intensity of the
system should exhibit the transition from the Porod range to
that of mass fractal. The ball should be big enough to absorb
the fractal completely. We chooseR1 = L2

√
3/2, whereL2

is the fractal size, and the centers of the ball and fractal coin-
cide. The volume of the region1 is obvious:V1 = 4πR3

1/3,
and its form factor is given byF1(q) = F0(qR1), where

F0(z) = 3(sin z − z cos z)/z3 (20)

is the form factor of ball of unit radius [5].
The mass fractal is the generalized Cantor fractal with con-

trollable fractal dimension. Its construction and properties are

described in detail in [22], see also [23, 24]. The initial ball
of radiusL2/2 is replaced by8 balls of radiusβsL2/2, where
βs is the scaling factor, whose value lies between 0 and1/2.
Then this ‘creating and scaling’ operation is applied to each
of the resulted balls again and again (see Fig. 4). The num-
berm of the operations is called fractal iteration. Then the
total fractal volume is given byV2 = (2βs)

3mπL3
2/6. The

fractal dimension of the volume, in the limit of infinite fractal
iterations, isD = −3 log 2/ logβs. The dimension takes the
values between0 and3 when the scaling factor varies from0
to 1/2. This fractal belongs to the class ofdeterministicfrac-
tals exhibiting the exact self-similarity. The form factorof the
generalized Cantor fractal ofmth iteration can be calculated
analytically [22]

F2(q) = F0(β
m
s L2q/2)G1(q)G2(q) · · ·Gm(q), (21)

whereF0(z) is given by Eq. (20) and we put by definition

Gm(q) = cos(umqx) cos(umqy) cos(umqz) (22)

with um ≡ L2(1− βs)β
m−1
s /2.

Substituting the above form factorsF1 andF2 in Eq. (9)
yields the scattering intensity of the three-phase system.If
the average is taken over the solid angles in accordance with
Eq. (5), we obtain not a smooth (like shown in Fig. 1) but
oscillating curve where the oscillations are superimposedon
the power-law regimes. The scattering curve like this is typi-
cal for deterministicfractals [23]. The smoothing effect, ob-
served experimentally, arises as a consequence of randomness
involved in the fractals. Indeed, in a physical system scatterers
almost always have different sizes. Therefore, a more realistic
description should involve size polydispersity. Here we con-
sider an ensemble of three-phase fractals with different sizes
taken at random. For the model, we choose the size distribu-
tion to be log-normal. It is characterized by the average size
value and the size relative dispersion (see Refs. [22, 23] for
details). Thus, the average in Eq. (8) is taken bothover an-
gles and sizes. Polydispersity obviously smears the intensity
curves, and the oscillations become smoother [23].

The results are shown in Fig. 5. For numerical simulations,
we take the following values of the model parameters: the
fractal iteration numberm = 5 and the scaling parameter
βs = 1/3 (which leads to the fractal exponentτ2 = 1.89 . . .,
coinciding with the fractal dimension). It is convenient to
measure the densitiesρ2 andρ0 in units of ρ1 and the scat-
tering intensity in units ofn1ρ

2
1V

2
1 . We putσr = 0.4 for the

relative dispersion of the log-normal distribution and choose
ρ2/ρ1 = 10 for all the plots. Then the values ofα depends
on the ratioρ0/ρ1. It can be seen clearly from Fig. 5a that
the interference terms in Eq. (9) plays a minor role even in the
Guinier range, where〈|F1(q)|2 ≃ 〈|F2(q)|2 ≃ 1. This is due
to the condition|1− α| ≪ 1.

Because of instrumental limitations, experimental SAS data
may contain only a part of the whole scattering curve. The
most common case is a curve showing only the transition be-
tween two power-law regimes, while the Guinier region and
the Porod region at highq are usually missing. Neverthe-
less, one can exploit the interpolation formula (17) even in
this case.
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FIG. 5. The scattering intensities from polydisperse three-phase
mass fractal model of typeI (see Fig. 3), where the region 1 is a ball
and the region 2 is the Cantor fractal. The parameters are described
in the text. The vertical arrows represent the crossover position as
estimated from Eq. (15). (a) The contribution of various terms to the
scattering intensity (9): the full intensity (black solid line), the con-
tribution of the ‘cross’ terms (blue dashed line), and the contribution
of the ‘diagonal’ terms (red dotted line). The correlation terms are
negligible on a double logarithmic scale. (b) The scattering intensity
(black) and the contributions of the ball (blue) and mass fractal (red).
Below the crossover point, the contribution of the mass fractal is neg-
ligible, while above it, the contribution of the ball is negligible. This
is why the intensity is a convex function near the crossover point. (c)
Contrast variation of the scattering intensity.
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FIG. 6. The scattering intensity of Fig. 5c in a narrowerq-range (a)
and its Kratky-like plots for the exponentτ1 = 4 of the surrounding
ball (b) and for the exponentτ2 = 1.89 . . . of the generalized Cantor
fractal (c). The vertical arrows show the positions of crossover as
estimated from Eq. (15). The contrast variation of the plateau values
allows us to distinguish between the typeI and typeII systems, see
Eqs. (17)-(19).

We remark some features of the model scattering intensi-
ties. First, the crossover position (15) can be very sensitive
to contrast variation, which influences significantly the length
of the fractal range (see Fig. 5c). While forρ0/ρ1 = 0.984
the length of fractal range is big enough, forρ0/ρ1 = 0.925
it becomes so small that once the intensity is obtained experi-
mentally, this range can hardly be interpreted as a ‘true’ frac-
tal behaviour of the system. This suggests the necessity of the
contrast variation experiments to reveal the structure of multi-
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phase system in real space. Second, at the end of the fractal
range, one can see a ‘shelf’ [22], which is nothing else but the
Guinier range of the smallest structural units composing the
fractal (the balls in our model). Such a behaviour is explained
fairly well within the Beaucage model.

The transition of the scattering intensity from one regime
to another one can be more clearly observed when we repre-
sent the contrast variation data in a Kratky-like plot. At low
and highq-values in Figs. 6b and 6c, respectively, one can
clearly see plateaus corresponding to the coefficientsa1 and
a2 in Eq. (17), to which the Stuhrmann method of contrast
variation can be applied. The further we are, in the plateau
region, from the crossover point, the better the approximation
(see the previous section). The oscillations observed beyond
the plateau regions damp with increasing the polydispersity.

V. CONCLUSION

We explain the origin and positioning of the crossover be-
tween successive power-law regime in SAS experimental data
for multi-phase fractal systems of typeI and II , see Fig. 3.
The crossover positions and the contributions of the different
structural levels to the total scattering intensity are controlled
by the effective dimensionless ‘contrast parameter’δ given by
Eq. (16), which depends on the relative values of the scattering
length density of each phase and their volumes and concentra-
tions.

A simple estimation of the crossover position (15) is ob-
tained. As is shown numerically in Sec. IV, the crossover po-
sition can be very sensitive to contrast variation, whichinflu-
ences significantly the length of the fractal range. The devel-
oped analysis is applicable for the scattering intensitiesthat
are ‘convex’ in the vicinity of the crossover point on a double
logarithmic scale and exhibits variation of the crossover point
with contrast variation.

From a practical point of view, the main result of this pa-
per is Eqs. (17)-(19). They can be used to fit experimen-
tal SAS data and distinguish between the typeI system (one
fractal absorbs the other fractal) and the typeII system (non-
overlapping fractals) as described in Sec. III. Once experimen-
tal intensity curves for a number of values ofρ0 is available,
one can fit the data with Eq. (17) and obtain the exponentsτ1
andτ2 and the coefficientsa1 anda2 as a function of the sur-

rounding densityρ0. Then plotting
√
a1 versusρ0 yields the

scattering densityρ1 of the first fractal as the contrast match
point, and the quantityn1V

2
1 /L

τ1
1 . Plotting

√
a2 versusρ0

allows us to distinguish between the typesI and II : if a2 is
independent ofρ0, we deal with a structure of typeI, other-
wise we deal with a structure of typeII. In the latter case, the
parametersρ2 andn2V

2
2 /L

τ2
2 can be found as well. Thus, the

Stuhrmann variation methods [21] is applied not to the scat-
tering intensity at zero angle but to the coefficientsa1 anda2.

We emphasize that the suggested multi-phase model nei-
ther contradicts nor denies the results of two-phase models
such as Beaucage’s model [18], but our model completes and
supplements them. Indeed, the contrast variation method sug-
gests a clear and transparent criterion to understand whether a
two-phase model is relevant to a specific power-law crossover,
observed experimentally, or not. If the crossover pointqc de-
pends on the surrounding scattering-length density then itcan-
not be explained in the framework of a two phase model. Note
that the crossover position can be very sensitive to the contrast
variation (see the discussion at the end of Sec. IV).

As is discussed in Introduction, the presence of the power-
law behaviour in the scattering intensity is sufficient but not
necessary condition for the existence of fractals in the sample.
The power-law behaviour can be ‘occasional’ and appears due
to polydispersity in a rather narrow range in momentum space.
We emphasize that even in this case the above analysis allows
us to distinguish between structures of typesI andII .

In the previous papers [22, 24], simple polydisperse models
of mass fractal are considered, for which scattering intensities
are similar to that of shown in Fig. 1a. Here we develop the
model, which is quite close to real physical structures with
rather complex distributions of scattering length densityand
whose behaviour is different essentially from the ‘standard’
one shown in Fig. 1a. Then the contrast variation experiments
are needed to reveal the real space structure of investigated
systems.
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