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Small-angle scattering (SAS) intensities observed erpattally are often characterized by the presence of
successive power-law regimes with various scattering mspts whose values vary from -4 to -1. This usually
indicates multiple fractal structures of the sample cheraed by different size scales. The existing models
explaining the crossover positions (that is, the pointsre/lige power-law scattering exponent changes) involve
only one contrast parameter, which depends solely on tleatthe fractal sizes. Here, a model that describes
SAS from a multi-phase system with a few contrast paraméetsscribed, and it is shown that the crossover
position depends on the scattering length density of eaasghThe Stuhrmann contrast variation method is
generalized and applied to experimental curves in the iycof the crossover point beyond the Guinier region.
The contrast variation is applied not to the intensity ftieit to the model parameters, which can be found
by fitting the experimental data with the suggested intexjpmh formula. The model supplements the existing
two-phase models and gives the simple condition of thejpfieability: if the crossover point depends on the
contrast then a two-phase model is not relevant. The desdlapalysis allows one to answer the qualitative
guestion of whether one fractal ‘absorbs’ another one or éine both immersed in a surrounding homogeneous
medium like a solvent or solid matrix. The models can be a&pitio experimental SAS data where the absolute
value of the scattering exponent of the first power-law regishigher than that of the subsequent second
power-law regime, that is, the scattering curve is ‘convedr the crossover point. As is shown, the crossover
position can be very sensitive to contrast variation, winéluences significantly the length of the fractal range.

I. INTRODUCTION is a general and well-known problem of the small-angle scat-
tering method, which cannot give us a well-defined and unam-

One of the most effective and reliable experimental methodiguous structure of samples in real space. In order tovesol
for investigating fractal structures | [1] 2] of materials at this general amblgwt_y and revea}l_the s_ample s'gructureah re
nanoscales is small-angle scatteri 3-5] that meashees tSPace, one needs t(_) involve addltlonal |nf0rmat|0r_1_fromanth
differential cross section of an irradiated sampégsusthe experlmental techniques or by knowing the conditions under
scattering vector magnitude[g = (47/\)sin, whereg is ~ Which the system has been created.
half the scattering angle, andis the wavelength of the inci- SAS data (X-ray or neutron) often show a succession of
dent radiation]. SAS allows one to obtain the edges of ﬂ'aCtapower-|aW regimes whose scattering exponents are taking ar
region in reciprocal space and the fractal dimen%ﬂbrlo]bitrar“y values from—4 to —1 ﬂﬂé On a double log-
The borders of linear dependance of the intensity in a doublgrithmic scale, the scattering intensity looks like coriadc
logarithmic scale shows the edges of the fractal region, andtraight-line segments. This type of behavior is usualgpoas
its sloper, being the power-law exponent of SAS intensity, ciated with two-phase multilevel structures and the stmadt

yields the fractal dimension(q) o ¢~ 7, where characteristics are revealed most often by using Beaucage
model [18]. However, experimental SAS papers have reported
D, for mass fractals the dependence of the scattering intensities on the scatter
[ D., for surface fractals 1) ing length densities of surrounding solvent or solid matrix
which the studied structures are immersed. In particutar, t

crossover positiong. (thatis, the points where the power-law
scattering exponent changes) can depend on the contrast val
[19]. This indicates a multi-phase structure of the saranie,
thus a method capable of extracting the structural progeerti
about each phase is needed.

Here the notation®) and D, are adopted for the fractal di-
mension of mass and surface fractals, respectively. Theval
of the fractal dimension can lie within the randesc D < 3
and2 < Dg < 3 for mass and surface fractals, respectively.
These restrictions lead to a simple physical interpretatib
experimental data: it < 3 then the measured sample is a Let us explain the problem in more detail. The multi-level
mass fractal, ifi < 7 < 4 then it is a surface fractal. Note structures suggested by Beaucagé [18] assumes that gsirticl
that this rule of thumb should be used with caution, becauseomposing a multi-level system are complex structures them
the appearance of the power-law behaviour can arise not onelves within their size-scale. An example is a mass fractal
due to the fractal structure of the irradiated sample. Fer inwith fractal dimensionD; composed of the structural units,
stance, the scattering intensity from spatially and rotetily =~ where each of them is another mass fractal with the dimen-
uncorrelated identical disks yields the exponent equat2o  sionD,. Then the scattering intensity on a double logarithmic
Another example is an ‘occasional’ power-law behaviour in ascale shows the ‘knee’ behaviour, where one straight lirle wi
quite narrow momentum range owing to polydispersity. Thisthe slope—D; passes into another straight line with the slope
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— D, at the crossover point. This model iswo-phasethat  with controllable fractal dimension [22,123].

is, it assumes that primary units of the above constructiena  The paper is organized as follows. In Set. I, we introduce
homogeneous with a constant scattering length densityland asome notations and emphasize some important issues about
the construction is embedded in a solid matrix with anotheiSAS from two- and three-phase systems. In Bec. Ill we derive
constant scattering length density. Hence, there is ondy ona simple fitting formula describing SAS from multi-phase-sys
contrast parameter (that is, the difference between the scaems and show how the contrast variation method can be used
tering length densities), and the scattering intensity@ppr-  in the vicinity of the crossover point. The crossover positi
tional to the squared value of the contrast, but its form iema is estimated through the model parameters, and the obtained
the same with the contrast variation. In particular, theweaf results are discussed. In Secl IV we show numerically theat th
the crossover position is independent of the contrast \@aitie developed model describes well the transition from Porod to
determined only by the ratio of the fractal sizes. mass fractal regimes.

On the other hand, multi-phase materials are ubiquitous in
nature, and one can expect that the presence of more than two
phases could be even more relevant. In a recent pager [20], th .
crossover between Porod and mass fractal regimes has been
explained for multi-phase systems. Here, we extend these re
sults and develop a model which describe SAS frowti- Let us consider a sample, consisting of microscopic scat-
phasesystem witha few contrast parametersAs is known’ terers with the Scattering Iengﬂ'}-. Then the differential
the method of contrast variation [21] is successfully used i Cross section of elastic scattering is given bly §5)/d =
the X-ray and neutron scattering for investigating muliape |Ac(q)]?, where
systems. This powerful method studies the intensity at zero _
momentum transfer and radii of gyration, and thus it is appli Ai(q) = / ps(r)e' " d3r 2
cable only in the Guinier region. However, the Guinier régio '
often lies beyond the resolution of experimental device. Wds the total scattering amplitude and is the total volume
suggest an extension of this method and show how it can bigradiated by the incident beam. Here, the scattering kengt
applied to experimental curves in the vicinity of the cro&so  densityp,(r) is defined with the help of Dirac’s-function:
pointbeyond the Guinier regioriThe contrast variation is ap- p4(r) = Zj b;é(r —r;), wherer; are the spatial positions of
plied to the model parameters, which can be found by fittinghe scatters.
the experimental data with the simple interpolation foranul Note that a constant shift of the scattering length density

There are essential differences between the model sudp the overall sample is important only for very small values
gested here and the Beaucage model. First, the structure @f wave vectorg, unattainable with the SAS technique. This
material in real space is assumed to be different. In conproperty is convenient to exclude the ‘background’ density
trast to the real-space structure of the Beaucage model déie sample.
scribed above, we consider two possible different strestur
(see Fig[B below):

Typel. A fractal with the scattering length densjty and di- A.  Two-phase systems

mensionD- is embedded in a bigger fractalith the density

p1 and dimensionDy, and they are immersed in a homoge- We consider first a two-phase sample composed of rigid
neous medium (solvent or solid matrix) with density homogeneous objects with the scattering length depsity-
Type Il. Two non-overlapping fractalsvith the dimensions mersed in a solid matrix of the densjty. Therefore, by sub-
D; and D, and scattering length densitips andp, are im-  tracting the ‘background’ densify, we can consider the sys-
mersed in a homogeneous medium with dengity tem as if the objects were ‘frozen’ in a vacuum and had the
Second, the suggested model is applicable if the scattigring densityAp = p — po. Itis called scattering contrast. Besides,
tensities are ‘convex’ in the vicinity of the crossover ga@na  the objects are supposed to be of the same volume and shape,
double logarithmic scale, that is, a steeper line at sméliesa  and their spatial positions and orientations are uncdeéla

of momentum transfer passes into a flatter line at the cressov Then the scattering intensity (that is, the cross sectiompi¢
point g.. This means that the fractal with higher power-law volume of the sample) is given by

exponent dominates at small values of momentum, while its 1 do

contribution to the scattering intensity is suppresseduad I(q) = — =5 =n|Ap]*V? <|F(q)|2> : (3
values of momentum. Here we give a recipe how in practice VidQ

to distinguish between the structures of typendIl and de- wheren is the object concentration in the samplé,is the
termine the densities; andp, by using the contrast variation volume of each object, anfl(q) is the normalized scattering

SMALL-ANGLE SCATTERING FROM TWO- AND
THREE-PHASE SYSTEMS

method. amplitude of the object
We confirm our conclusions by doing numerical calcula- 1 _
tions with randomly oriented and uniformly distributedetbr F(q) = / e "Tdr, (4)

phase systems containing balls and mass fractals, embedded v
in a solvent or solid matrix. The basic model for the numéricaobeying the conditiorF’(0) = 1. It is also called the nor-
calculations of mass fractals is the generalized Cantotdl®  malized form factor. The brackets- - ) stand for the mean



value given by the ensemble averaging over all orientatiéns 100 —— ' '
the objects. If the probability of any orientation is the sam L L/1=100
then the mean value can be calculated by averaging over all (£, (¢)]") ; D=26 ]
directionsn of the momentum transfey = ¢n, that is, by 103 D ]
integrating over the solid angle in the spherical coordisat ] 4 ]
¢z = qcospsind, g, = ¢sin psind andg, = gcosv
1 ™ . 2m 10 ~q
Farapa) = 5 [ avsind [ defla0.0). ®) , ,
T Jo 0
E E
If the object is a mass fractal of the total length com- 10°1, . : .
posed ofp small structural units of the siZethen its normal- @) 10° 10 107 10°
ized form factor can be estimated qualitatively by the folamu qL
0 1 1 1 1
1, q<2r/L, 107 LA =100
2y o ) (aL/2m) P, 2m/L S q S 2, IF @) ; Dsm23
(Fn(@)l) =~ SR ©®) @ | 1
—(ql/27T)_4, q 2/l 107 D6 ;
p E ~q E
see Fig[lla. Here is of order(L/l)” in accordance with o] !
the definition of the fractal dimension, obeying the corudtiti 107 ]
0<D<3. 1 \ ~ q'4 1
A surface fractal can be constructed, say, from balls with 3 o 5 iL/l
different radiir, whose centers are spatially uncorrelated 107+ 5 ™ ” wh "
side the fractal If the radii are taken at random with the dis- (b)y 10 10 L10 10
tribution proportionaltd /rP=*! at smallr and the parameter q

Ds obeys the conditio? < Dy < 3 then one can show that _ _

D, is indeed the fractal dimension of the total ball surfaces.f t:ff 1 tAl'SCh‘?I_rﬂat',CtrEpri,se“tar:'O” ‘t):] S?hs from mass (a) a"dgﬁ

Certainly, in practice, the restrictidn< r < L should be im- ractals. the intensities show the three main rangesmi

posed gnd tfle fractal properties appear\ only within tirigea (?]t smallg), frTCta| r(Et |ntdermed|atql) am(jj POfr?d (at higly). The
’ o . Pt teristi t l ined in the text.

Now the qualitative estimating formula takes the form characlerisic lengins anct are explained in the tex

1, q S 2n/L,
(qL/2m)"=5, 27 /L < q S 27/,
(LIPS (qlj2m)~, g2 20/,

between the centers of the structural units, while the &lact

region of the surface fractal (Fifg] 1b) is determined by the

biggest and smallest radii present in the fractal. For a mass
(7)  fractal in the fractal region, the interparticle spatiaireta-

see Fig[llb. We emphasize that héris of order of the largest  tions between the structural units play an important rahel, a

radius of the balls but not the total fractal length, @nsithe  the fractal behaviour can be understood by analogy with op-

smallest radius. Equatiorid (6) afidl (7) explicitly show that  tics ], while for a surface fractal, the spatial corriglas

scattering intensity in momentum space is characterized bpetween the structural units are not important for its fct

three main ranges: Guinier at< 2r/L, fractal at2r/L < properties.

g < 2w/l and Porod at > 27 /1. Note that a simple three-

dimensional set like a ball does not exhibit fractal behawio

at all; here the Porod range follows the Guinier range. Iddee

the fractal region ‘collapses’ if we put formally= L in either

of the relations[{6) and[{7). The three-phase systems consist generically from homoge-

We make a few remarks about the scattering intens[iies (&)eous structures with the scattering length densitiemndp-,

and [T). First, the intensity in the Guinier range is actuall immersed in a homogeneous medium with the densityBy

parabolic: I(q) ~ I(0)(1 — R2¢*/3). This parabolic be- subtracting the ‘background’ density, we arrive at the same

haviour of the intensity is ignored in the above estimationsstructural units with the contrasts — po andps — pg, respec-

for the sake of simplicity. Second, the relatidh (6) is appli tively, in a vacuum (see Fi@ll 2). Effectively, this proceglur

cable at large momentum > 27/l if the minimal distance allows us to reduce the three-phase system to the two-phase

between the structural units composing the mass fractdl is system.

order of their size. Otherwise, if the size is much smallanth Let us calculate the scattering intensity from a macroscopi

the minimal distance then there exists a plateau (‘she#2) b number of the objects shown in Figl. 2, whose spatial posi-

tween the end of the fractal range and the beginning of th&ons and orientations are supposed to be uncorrelated:-In a

Porod range [22]. Third, the fractal region of the mass flact cordance with the general relatidd (2), the intensity isegiv

(Fig.[da) is determined by the maximal and minimal distancedy 1(q) = n{|A(q)|?), whereA(q) andn are the scattering

(|E(@)f) =

B. Three-phase systems
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(b) the correspondingower-law exponents are quite different
(recall that the exponents are directly connected to thetdtra
dimensions by the relatiofl(1);

(c) the dimensionless parametegiven by Eq.[[ID) obeys the
condition|1—«| < 1whenr; > 1 or|a| < 1whenry > 7.
Let us choose the first case without loss of generality.

Then the scattering intensity exhibits the ‘knee’ convex
structure on a double logarithmic scale. Indeed, at low mo-
mentum the first term in the r.h.s. of EQ] (9) dominates due to
the condition(c). On the other hand, the first term is propor-
tional to F;, which decrease faster thdf according to the
condition(b). At the crossover poing., the both terms be-
FIG. 2. A three-phase system composed of a homogeneousiregicome approximately equal, and at high values of momentum
1 with the scattering length densipy, which ‘absorbs’ a region 2 the second terms dominates.
with the densityp.. They together are embedded in a homogeneous The physical picture can be simplified further if we notice
medium (solve_nt or s_olid matrix) with the densipyj._ The three- _thatthe interference termsproportional to(F; (q)Fy (q)) +
phase system is .e.quwalent to the two-phase one in a vacutim wi (F7(q)F»(q)), can be neglected, provided one of the am-
the contrast densitigs; — po andpz — po, respectively. plitude dominates This obvious statement can easily be
proved even rigorously by means of the Cauchy-Schwarz

inequality [(F1(q)F5 (q))]* < ([Fi(q)]*)(|F1(q)]?), valid

amplitude of the objects and their concentration in the SaMior arbitrary q. Indeed, if for example, the second ampli-
ple, respectively. 'I_'he amplitude can be written down with th tude still dominates(|F1,|2> < (B 'then (FLFS)| <
help of the normalized form facto@(q) andFs(q) and vo_I— TR VRE < (F?). Neglecting the i t2f <
umesV; andV; of the space regions 1 and 2, respectively, L 217/ 20/ glecting the interierence
shown on the left in Figl]2. Indeed, it is given by a sumtermsin Eq.[(B) yields

A(q) = Arout(q)+A2(q), whereds (q) = (p2—po)VaFa(q) N2 12 2 22 2
is the scattering amplitude of the region 2, atg,.:(q) = I(a) = (pr = po) nVi (IF1(@)[%) + (p2 = p1) 1 V5 <|F2(‘I()1|1')

(p1 = po)[ViFi(q) — VaF2(q)] is the amplitude of the region Although this approximation is valid beyond the crossower p
that remains after excluding the region 2 from 1. Finally, we_. . . , .
sition, the ‘crossover range’ where the amplitudes are ef th

derive .
same order of magnitude always looks rather small on a dou-

_ _ _ 2 ble logarithmic scale. Therefore, we can use Egl (11) even
I(g)=n ViFi(q) + Vo P . (8 g
(@) <}(p1 PoIViFi(a) + (p2 = p)Ve Q(q)’ > ®) quite close to the crossover poipt We show numerically in

This expression can be written in the form![20] the next section that omitting the interference term is éude
very good approximation.
I(q) = I(0){|aFy(q) + (1 — o) Fa(q)[?), 9) Finally, the conditior(a) allows us to use the power-law be-

) S _ haviour of form factors in the fractal regimes given by EBB. (
where we denoté(0) = nVi*(p1 — po)?a™* and introduce gpg [7), and we derive from EG_{11)
by definition the ‘contrast parameter’
— 2 2 _ 2 2
(g) = (p1 = po)™nVi®  (p2 — p1)°nV; (12)

- —1 I = )
0= (1 N ul) . (10) (qL /207 (qLa/2m)™
p1—po Vi

o _ ) o where the exponents, and » are given by Eq.[{1). This
This dimensionless parameter determines the relativaieont ig the interpolation formula for the scattering intensitgrh
butions of the corresponding form factors, and thus it @str 3 macroscopic number of objects of type ‘fractal inside-frac
completely the form of the resulting scattering intensitiiile  ta)’, the typel described in Introduction (see the left panel in
the average scattering length density of the okject po)/a Fig.d).
determines the intensity at zero momentum. One can consider a macroscopic number of non-
overlapping fractals with concentrationg andns, which all
are spatially uncorrelated (system of typshown on the right
panel in Fig[B). The scattering intensity for this type ofsy
tem can be obtained in the same manner as[E¢). (12)

I11. THE INTERPOLATING FORMULA AND THE
GENERALIZED METHOD OF CONTRAST VARIATION

Let us analyze and further simplify the general relatldn (8)1(q) = (p1—po)?n1 V(| F1(q)|*)+(p2—po)*na Vi (| Fa(q)|*.
[or @)] for the scattering intensity from the three-phags-s (13)
tem. Suppose that the systems 1 and 2 shown in[FFig. 2 ainally, we have in the particular case when the both regions
mass or surface fractals, obeying the power-law behaviour iare in the scattering fractal regimes
the corresponding fractal ranges in accordance with[Eapr(6)
(7). We assume that the following conditions are satisfied: I(a) — (p1 = po)*maVE  (p2 — po)*naVs 14
(a) their fractal ranges in momentum space overlap; (9) = (qL1/27)™ (qLy/2m)7 (14)




P whered is the dimensionless ‘contrast parameter’
¢ _ 2
3 ) 2 A1)

for typel

@ =12 X —
@ Vi %@7 for typell.
(p1 = po)? m

Py
P~ P,

I Certainly, for the typé structure (see Fidl 3), this parameter
(@) Type I is connected simply with the ‘contrast parametegiven by
Eq. (T0) by the relatiod = (1 — a)?/a?.

The parametef plays an important role, because it deter-
mines the relative ‘weights’ of the squared normalized form
factors in Eqgs.[(1) and{113) [and correspondingly EQs. (12)
and [1%) in the fractal ranges]. As a consequence, it governs

(16)

T w the form of the scattering intensity. Note that the suggeste
~ model works only if§ < 1 and simultaneously; > 7 or
@l [ inverselyd > 1 andm < 72. Otherwise only one form factor
dominates for all values of the momentum and there is no tran-

P,— P, I sition on the scattering curve at all. Within the model, cae ¢
obtain only the ‘convex’ behaviour near the transition poin
% on a double logarithmic scale.
The both approximations for the scattering intensifieg (12
and [14) can be written in the form

(b) Type 1l
a a
. . I(q) = — + —, (17)

FIG. 3. Generic three-phase system of typandIl, described in qm g™
detail in Introduction (see pafié 2). (a) The typ&ructure is shown o
on the left panel: the region 2 is embedded in the region 1. Thévhere we put by definition
sample consists of a macroscopic number of these spatiadigru . 9 5
related structures, which are embedded in a solvent or swditlix ay = (2m/L1)" ni Vi (p1 — po)”, (18)
(right). The number of objects 1 and 2 is equal and hence toeir n1(ps — )2 for typel
centrations over the sample coincide. (b) The tiipstructures: the as = (21/Ly)?VE x ! P2 =P ) " (19)
regions 1 and 2 do not overlap and their positions are unieoeck na(p2 — po)*, fortypell,
in the sample. The concentrations of objects 1 and 2 arereliffén
general. and the exponents andr, are related to the corresponding

fractal dimensions by Eq.J(1).
One can prepare a number of samples, which differ only in
the densitypy of solvent or solid matrix, and measure their
SAS intensities; this is the method of contrast variatioi, i
Equations[(IR) and_(14) are very similar to each other, excegially suggested by Stuhrmann [21]. Fitting formulal(17) in
for the density dependence in the second term. This difteren conjunction with equation§ (18) and {19) suggests the exten
can be used to distinguish between the typasdll experi-  sion of this method when it is applied not for the scattering
mentally. intensity itself but for the coefficients; anda,. Indeed, fit-
ting each intensity curve with Eq._{IL7) yields the values of
The first and the second terms in the expression for scadimensionsD; andD, (through the exponents andr;) and
tering intensity [Eq. [(I11) of(13)] are of the same order ofthe values of these coefficients at given valuegppf Since
magnitude in the vicinity of the crossover point, and, there ,/a; ~ |p; — po|, one can find the value of; as the con-
fore, equating these terms yields the crossover positimte N - trast match point in the playa; versusp, and determine the
that the form factord{6) anfl(7) contain all the qualitatiee  value ofn, V;?/L]" as well.A structure of the type Il exhibits
gions in the intensity curve: the Guinier, fractal and Porodthe similar dependence of the coefficientand the values of
regions, and thus this curve together with gl (11 of (13) aldensityp, andn;V;?/L]" can be found the same wa§.a; is
lows us to obtain the crossover position for all the types ofindependent of,, we deal with a structure of the typeahd
transitions: Guinier-fractal, Guinier-Porod, fracteéftal and  hardly can extract more information than the contrast value
fractal-Porod. For the fractal-fractal transition one cae di-  |p, — p| itself unless other methods are used.
rectly Egs. [(IR) and(14) and obtain Very often a priori information about the fractal system un-
der investigation is known, mainly from other experimental
techniques or by knowing the conditions under which the sys-
s 1/ (ramr) t_em has been created_. One can then use the found coefficients
~9 5L11 (15) like nyV;2/L7* to obtain the unknown feature. For example,
Qe =270 L7 ’ if the concentratiom; is known from a sample preparation,
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described in detail il [22], see aldo [23] 24]. The initiall ba
of radiusL, /2 is replaced by balls of radius3s L2 /2, where

Bs is the scaling factor, whose value lies between 0 Bfid
Then this ‘creating and scaling’ operation is applied toheac
of the resulted balls again and again (see Eig. 4). The num-
berm of the operations is called fractal iteration. Then the
total fractal volume is given by, = (26:)>™rL3/6. The
fractal dimension of the volume, in the limit of infinite fiat
iterations, isD = —3log2/log Bs. The dimension takes the
values betweefi and3 when the scaling factor varies frobn

to 1/2. This fractal belongs to the class @éterministicfrac-
tals exhibiting the exact self-similarity. The form factdfrthe
generalized Cantor fractal efth iteration can be calculated
analytically [22]

Fy(q) = Fo(B"L2q/2)G1(q)G2(q) - Gm(q),  (21)
whereFy(2) is given by Eq.[(2ZD) and we put by definition

Gm (q) = COS(uqu) Cos(quy) Cos(quz) (22)
FIG. 4. (a) The2D projection of zero, first and second iterations of With = Lo(1 — ﬁs)ﬁ;”_l/l

the generalized Cantor fractal. Here we cho@se= 1/3. (b) A L .
specific structure of type(see FiglR): the Cantor mass fractal of the . Substituting the_ ab_ove fo_rm factofs and £ in Eq. (9)
yields the scattering intensity of the three-phase systém.

densityp. (region2) is embedded in a ball of the densjty (region ! . . .
1. the average is taken over the solid angles in accordance with

Eq. (8), we obtain not a smooth (like shown in Hig. 1) but

oscillating curve where the oscillations are superimpased
the sizeL, of the region 1 can be estimated from the borderthe power-law regimes. The scattering curve like this is-typ
of the Guinier range (see Figl. 1). Then the fractal voldrie cal for deterministicfractals [28]. The smoothing effect, ob-
can be calculated as well. served experimentally, arises as a consequence of randsmne

Note that the coefficients; andas, is given by the asymp- involved in the fractals. Indeed, in a physical system scats
totics of the functiong™ (q) andq™1(q), respectively, be- almost always have different sizes. Therefore, a morestiali
yond the crossover regime. Therefore, their values can beescription should involve size polydispersity. Here we-co
found from a Kratky-like plot on a double logarithmic scale sider an ensemble of three-phase fractals with differemtssi
(see Figlb below). taken at random. For the model, we choose the size distribu-

tion to be log-normal. It is characterized by the average siz
value and the size relative dispersion (see Réfs. [[22, 23] fo
IV. AN EXAMPLE: POROD TO MASSFRACTAL details). Thus, the average in EQ] (8) is taken bmthr an-
TRANSITION gles and sizesPolydispersity obviously smears the intensity
curves, and the oscillations become smoother [23].

In order to confirm the above results, we consider an ‘ex- The results are shown in Fig. 5. For numerical simulations,
actly solvable’ three-phase system of typésee Fig[R): a we take the following values of the model parameters: the
mass fractal of the density, (region2) embedded in a ball fractal iteration numbern = 5 and the scaling parameter
of the densityp; (region1). A ball of radiusR; can be con- g, = 1/3 (which leads to the fractal exponent= 1.89...,
sidered as the limiting case of surface fractal with surfdiee coinciding with the fractal dimension). It is convenient to
mensionDs; = 2. This specific structure of typleis shown  measure the densitigs andp, in units of p; and the scat-
in Fig.[4. In the rangey 2 27/R;, the scattering inten-  tering intensity in units of.; p? V2. We puto, = 0.4 for the
sity of ball is characterized by the Porod exponent, equal teelative dispersion of the log-normal distribution and cbe
71 = 6 — Dg; = 4. Therefore, the scattering intensity of the p2/p1 = 10 for all the plots. Then the values of depends
system should exhibit the transition from the Porod range t@n the ratiop,/p;. It can be seen clearly from Figl 5a that
that of mass fractal. The ball should be big enough to absorthe interference terms in E@](9) plays a minor role evenén th

the fractal completely. We choodty = L»V/3/2, whereLy  Guinier range, wheré Fi (q)|? =~ (|F2(q)[* ~ 1. This is due
is the fractal size, and the centers of the ball and fractal-co to the condition1 — a| < 1.

cide. The volume of the regiohis obvious:V; = 4R} /3, Because of instrumental limitations, experimental SA@ dat
and its form factor is given by’ (¢) = Fo(¢R,), where may contain only a part of the whole scattering curve. The
Fo(z) = 3(sin z — 2 cos 2) /3 (20) most common case is a curve shoyvmg only t.hg transition be-
tween two power-law regimes, while the Guinier region and
is the form factor of ball of unit radius|[5]. the Porod region at high are usually missing. Neverthe-

The mass fractal is the generalized Cantor fractal with conless, one can exploit the interpolation formulal(17) even in
trollable fractal dimension. Its construction and projaraire  this case.
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FIG. 5. The scattering intensities from polydisperse tipkase
mass fractal model of typle(see Fig[B), where the region 1 is a ball
and the region 2 is the Cantor fractal. The parameters arided
in the text. The vertical arrows represent the crossoveitipnsas
estimated from Eq[{15). (a) The contribution of variousreto the
scattering intensity[{9): the full intensity (black solidé), the con-
tribution of the ‘cross’ terms (blue dashed line), and thetdbution
of the ‘diagonal’ terms (red dotted line). The correlatiennis are
negligible on a double logarithmic scale. (b) The scatteimensity
(black) and the contributions of the ball (blue) and masstélgred).
Below the crossover point, the contribution of the massé#las neg-
ligible, while above it, the contribution of the ball is nigble. This
is why the intensity is a convex function near the crossoweartp(c)
Contrast variation of the scattering intensity.
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FIG. 6. The scattering intensity of Figl 5c in a narrowerange (a)
and its Kratky-like plots for the exponemnt = 4 of the surrounding
ball (b) and for the exponent = 1.89. .. of the generalized Cantor
fractal (c). The vertical arrows show the positions of coe®s as
estimated from Eq[{15). The contrast variation of the platealues
allows us to distinguish between the typand typell systems, see

Egs. (AT){(D).

We remark some features of the model scattering intensi-
ties. First, the crossover positidn {15) can be very semsiti
to contrast variation, which influences significantly thegth
of the fractal range (see Figl 5c). While fog/p; = 0.984
the length of fractal range is big enough, far/p1 = 0.925
it becomes so small that once the intensity is obtained éxper
mentally, this range can hardly be interpreted as a ‘truse-fr
tal behaviour of the system. This suggests the necessiheof t
contrast variation experiments to reveal the structurewdfim
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phase system in real space. Second, at the end of the fractalunding density,. Then plotting,/a; versusp, yields the
range, one can see a ‘shelf’ [22], which is nothing else beit th scattering density, of the first fractal as the contrast match

Guinier range of the smallest structural units composireg th point, and the quantity,, V;?/L7".

fractal (the balls in our model). Such a behaviour is ex@din
fairly well within the Beaucage model.

Plotting \/as versuspg
allows us to distinguish between the tydeandll: if a5 is
independent ofy, we deal with a structure of typg other-

The transition of the scattering intensity from one regimewise we deal with a structure of tygéd. In the latter case, the
to another one can be more clearly observed when we reprgarameterg, andn V2 /L3> can be found as well. Thus, the
sent the contrast variation data in a Kratky-like plot. Avlo Stuhrmann variation methods [21] is applied not to the scat-
and highg-values in Figs[16b and| 6¢, respectively, one cantering intensity at zero angle but to the coefficiemtsindas.

clearly see plateaus corresponding to the coefficientand

We emphasize that the suggested multi-phase model nei-

az in Eq. (I7), to which the Stuhrmann method of contrastther contradicts nor denies the results of two-phase models
variation can be applied. The further we are, in the plateaguch as Beaucage’s modell[18], but our model completes and

region, from the crossover point, the better the approxonat

supplements them. Indeed, the contrast variation methgpd su

(see the previous section). The oscillations observedrikyo gests a clear and transparent criterion to understand ahath

the plateau regions damp with increasing the polydispersit

V. CONCLUSION

two-phase model is relevant to a specific power-law crogsove
observed experimentally, or not. If the crossover pginde-
pends on the surrounding scattering-length density theami

not be explained in the framework of a two phase model. Note
that the crossover position can be very sensitive to thaasint

We explain the origin and positioning of the crossover be-variation (see the discussion at the end of Sek. V).
tween successive power-law regime in SAS experimental data As is discussed in Introduction, the presence of the power-

for multi-phase fractal systems of typeandll, see Fig[B.
The crossover positions and the contributions of the difier
structural levels to the total scattering intensity aretoated
by the effective dimensionless ‘contrast parametgjiven by
Eq. (18), which depends on the relative values of the saagfer

law behaviour in the scattering intensity is sufficient bat n
necessary condition for the existence of fractals in thegdam
The power-law behaviour can be ‘occasional’ and appears due
to polydispersity in a rather narrow range in momentum space
We emphasize that even in this case the above analysis allows

length density of each phase and their volumes and coneentras to distinguish between structures of typesidll.

tions.

In the previous papers [22,124], simple polydisperse models

A simple estimation of the crossover positiénl(15) is ob-of mass fractal are considered, for which scattering iritiess
tained. As is shown numerically in SECIIV, the crossover poare similar to that of shown in Fi§] 1a. Here we develop the

sition can be very sensitive to contrast variation, whidtu-
ences significantly the length of the fractal rangéne devel-
oped analysis is applicable for the scattering intenstties
are ‘convex’ in the vicinity of the crossover point on a daaibl
logarithmic scale and exhibits variation of the crossowenp
with contrast variation.

From a practical point of view, the main result of this pa-

model, which is quite close to real physical structures with
rather complex distributions of scattering length denaityg
whose behaviour is different essentially from the ‘staddar
one shown in Fig.J1a. Then the contrast variation experiment
are needed to reveal the real space structure of invesligate
systems.

per is Eqgs.[(T7)E(M9). They can be used to fit experimen-

tal SAS data and distinguish between the tymystem (one
fractal absorbs the other fractal) and the tyijpsystem (non-
overlapping fractals) as described in $&g. I1l. Once expeni
tal intensity curves for a number of valuesmfis available,
one can fit the data with E4.{1L7) and obtain the exponants
andr, and the coefficientg; anda, as a function of the sur-
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