This document recommends some SANS data fitting models, available in fitting packages at ISIS, for inclusion in SANSView.

The names in brackets in the "Model" field are the subroutine name (eg, Debye), and the FORTRAN module name (eg, DEBYE.FOR).

Variables:

В	Background
Ι	Cross-section
Q	Scattering vector
Ν	Number density of scatterers
V	Volume of a scatterer
ϕ_{p}	Volume fraction of particles
ρ	Scattering length density
δ	Bulk density of scatterer
Nagg	Cluster aggregation number
$R_p/R/R_0$	Particle (spherical) radius
$\hat{R_g}/r_g$	Radius-of-gyration
σ	Second moment of distribution (layer thickness)
Γ	Adsorbed amount (mass adsorbed per unit area of interface)
D_m	Mass fractal dimension
D_s	Surface fractal dimension
D_f	Fractal dimension
ξ	Fractal cut-off length
τ	Cluster polydispersity parameter (NB: smaller is broader!)

Steve King ISIS October 2011

stephen.king@stfc.ac.uk

	No.	Model	Parameters	Equations	Remarks & References
--	-----	-------	------------	-----------	---------------------------------

SANSView Category: Shapes

7	I0 term for Second Moment of Adsorbed Layer (Complex)	1 Calibration factor	$I(0) \approx (\alpha - \alpha)^2 \times$	"Using SANS to study adsorbed
	(New_I0_Term)	2 Density Poly [g/cm3]	$I_0(\mathcal{Q}) \sim (\mathcal{P}_l \ \mathcal{P}_m) \land$	layers in colloidal dispersions"
	(SIGMA2.FOR)	3 Contrast Term [/cm2]		Cosgrove, T
		4 Core radius [Angs]	$6\pi\phi_n$ Γ^2 (2 2)	Chapter 4 in "Applications of
		5 Vol fract/n of cores	$\left \frac{-\frac{p}{c^2}}{\sigma^2}\right + B$	Neutrons in Soft Condensed
		6 Ads/d amount [mg/m2]	$\begin{bmatrix} Q^{2} & \partial^{2} R_{p} \end{bmatrix}$	Matter", Gabrys, BJ (editor)
		7 Second moment [Angs]		Gordon & Breach, (2000)
		8 Background		

This model, used in dozens of published papers, describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the conditions that (i) the particles are contrast-matched to the dispersion medium, (ii) $S(Q)\sim1$ (ie, the particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for.

Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous step-function). Parameter 7 is the *second moment about the mean* of the density distribution (ie, the distance of the centre-of-mass of the distribution from the interface). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second moment $\sigma = (t^2/12)^{1/2}$.

A variant of this model allowing for polydispersity on the particle radius would be most welcome!

SANSView Category: Shape-Independent

SANSView already incorporates a fractal aggregate model using Jose Teixeira's 1988 scattering function. However Teixeira and Chen developed this model further during the early 1990's. As the last reference shows, even Teixeira is still using it!

24	Chen Fractal Fit for Aggregates	1 Chen Fractal Scaling	$(a - a)^2 \Phi V N$	Note that a small Polydispersity
	(Chen)	2 Primary Radius [Ang]	$I(O) = \frac{\langle \mathcal{P}_{fractal} \mathcal{P}_{medium} \rangle \cdot \Psi \cdot \Psi_{primary} \cdot \Psi_{agg}}{\langle \mathcal{P}_{fractal} \mathcal{P}_{medium} \rangle \cdot \Psi \cdot \Psi_{primary} \cdot \Psi_{agg}} \times$	index corresponds to a <i>broad</i> size
	(CHEN.FOR)	3 Aggregation Number	$\Gamma(2-\tau)$	distribution.
		4 Polyd of Cluster,Tau		Scaling is programmed as:
		5 Fractal Dimension Df	$E(2 - O^{\xi}) (1 + O^{2} \xi^{2})^{-D_{f}(3-\tau)/2}$	$(\Delta \rho)^2 \cdot \Phi$
		6 Background	$[F(3-i,Q\zeta)(1+Q\zeta)] +$	Chen Rouch & Tartaglia
				Croat. Chem. Acta, 65(2), (1992),
			$(O \mathcal{E})^{-D_f}$	353-366
			$\left G(2-\tau,Q\xi) \right = \frac{25}{I} \left \right + B$	Liu Shau Chan & Storm
			(n)	Fuel, 74(9), (1995), 1352-1356
			Where	Fratini, Bonini, Oasmaa,
				Langmuir, 22, (2006), 306-312
			$V_{primary} = (4/3) \cdot \pi \cdot R_0^3$	
			$R^2 - (3/5) R^2$	
			$R_1 = (373) \cdot R_0$	
			$\xi = h \cdot R_1 \cdot N_{agg}^{(1/D_f)}$	
			$\overline{\mathbf{D}_{\mathbf{r}}(\mathbf{D}_{\mathbf{r}}+1)}$	
			$h = \left \frac{D_f (D_f + 1)}{D_f (D_f + 1)} \right $	
			$n = \sqrt{\frac{6}{6}}$	
			$F(a, x) = \Gamma(a) - \Gamma(a, y)$	
			$\Gamma(u, n) = \Gamma(u) + \Gamma(u, n)$	
			$ = \pi D_c/2 $	
			$h^2 \cdot (1+Q^2\xi^2)$	
			$u = \boxed{\frac{\Omega^2 \xi^2}{\Omega^2 \xi^2}}$	
			$-\left(\left(x \right)^{D_{f}} \right)$	
			$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} a & & \\ a \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$	
			$\left G(a, \mathbf{r}) - \sin \left \frac{(D_f - 1) \cdot \pi}{(n_f - 1) \cdot \pi} \right = \frac{(n_f - 1) \cdot \pi}{(n_f - 1) \cdot \pi} \right $	
			$\frac{O(u, x) - Sm}{2}$ $\frac{O(u, x) - Sm}{2}$	

The following model is an alternative fractal aggregate model developed by Paul Schmidt, Dale Schaefer, and others.

21	Schmidt (Hurd-Schaefer-Martin) Mass & Surface Fractal	1 Prefactor Term	$I(\Omega) = NV^2 (\Lambda \rho)^2 P(\Omega) + B$	Note that $0 < D_s \le 6$ and
	(Fractal_QtoN)	2 Mass Fractal Dimens.	$I(\underline{y}) = I(\underline{y} + \underline{z})$ $I(\underline{y}) + \underline{z}$	$0 < D_m \le 6.$
	(QTON2.FOR)	3 Cluster Rg 4 Surface Fract. Dim. 5 Primary Rg 6 Background	Where: $P(Q) = \{[1 + (Q^2 q)]^{D_m/2} \times $	Schmidt J Appl Cryst (1991), 24, 414-435 See equation (19)
		o Background		See equation (17)
			$[1 + (Q^2.b)]^{(6-D_s-D_m)/2}\}^{-1}$	Hurd; Schaefer; Martin, Phys Rev A (1987), 35, 2361-2364
			$a = R_g^2 / (3.D_m / 2)$	See equation (2)
			$b = r_g^2 / [-3.(D_s - 6 + D_m) / 2]$	

The Teixeira model already in SANSView, and the Chen-Teixeira and Schmidt-Scaefer models above, are all fractal *aggregate* models. SANSView does not currently have any pure fractal scattering models. The following would remedy this situation.

18	Mildner-Hall Surface Fractal (Fractal_Ds) (DS.FOR)	<pre>1 Prefactor Term 2 P(q) particle radius 3 Surface Fract. Dim. 4 Cut-off Length 5 Background</pre>	$I(Q) = N.V^{2}.(\Delta \rho)^{2}.P(Q,R).S(Q) + B$ Where: $P(Q,R) = \left[\frac{3(\sin(QR) - QR\cos(QR))}{(\alpha R)^{3}}\right]^{2}$	Note that $0 < D_s \le 6$. Mildner; Hall, J Phys D Appl Phys (1986), 19, 1535-1545 See equation (13) Triolo et al
			$\lfloor (QR)^{5} \rfloor$ $S(Q) = [(\Gamma(5-D_{s}),\xi^{(5-D_{s})}.[1+(Q^{2}\xi^{2})]^{(D_{s}-5)/2} \times sin[(D_{s}-5).arctan(Q\xi)])/Q]$	(2000), 33, 863-866 See equation (3)
20	Mildner-Hall (Schaefer-Keefer) Mass Fractal (Fractal_Dm) (DM.FOR)	 Prefactor Term P(q) particle radius Mass Fractal Dimens. Cut-off Length Background 	$I(Q) = N.V^{2}.(\Delta \rho)^{2}.P(Q,R).S(Q) + B$ Where: $P(Q,R) = \left[\frac{3(\sin(QR) - QR\cos(QR))}{(QR)^{3}}\right]^{2}$	Note that $0 < D_m \le 6$. Mildner; Hall, J Phys D Appl Phys (1986), 19, 1535-1545 See equation (9) Triolo et al J Appl Cryst
			$S(Q) = [(\Gamma(D_m - 1).\xi^{(D_m - 1)}.[1 + (Q^2\xi^2)]^{(1 - D_m)/2} \times sin[(D_m - 1).arctan(Q\xi)])/Q]$	(2000), 33, 863-866 See equation (4) Schmidt J Appl Cryst (1991), 24, 414-435 See equation (18)

As written above, the form factor contribution is assumed to be from spherical particles. This could, of course, be extended to other shapes.

The following model is useful for characterising gels/networks with different degrees of swelling.

22	Shibayama-Geissler Two-Length Scale Fit for Gels (GelFit) (GEISSLER.FOR)	<pre>1 Lorenztian Scaling 2 Guinier Scaling 3 Short correl. Length</pre>	$I(Q) = f \cdot I(0)_1 \cdot \frac{1}{\left(1 + \left[\left((D+1)/3\right) \cdot Q^2 a_1^2\right]\right)^{D/2}} + \frac{1}{\left(1 + \left[\left((D+1)/3\right) \cdot Q^2 a_1^2\right)\right)^{D/2}} + \frac{1}{\left(1 + \left[\left((D+1)/3\right)$	Sibayama; Tanaka; Han J Chem Phys (1992), 97(9), 6829-6841
		4 Radius of Gyration 5 Scaling Exponent 6 Background	$(1-f).I(0)_2.\exp(-Q^2a_2^2) + B$	Mallam; Horkay; Hecht; Rennie; Geissler, Macromol
			Where:	(1991), 24, 543
			<i>D</i> is the scaling exponent	
			$a_2^2 \approx \frac{R_g^2}{3}$	
			Note that this reduces to:	
			$I(Q) = f \cdot I(0)_1 \cdot \frac{1}{(1+Q^2a_1^2)} + (1-f) \cdot I(0)_2 \cdot \exp(-Q^2a_2^2)$	
			when $D=2$; ie, when the Flory exponent is 0.5 (theta conditions)	