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This help file contains a listing of all of the model functions currently available in the 
NIST SANS analysis package. Now there should be no excuse for anyone not reading the 
documentation since the model documentation is linked to each model through the SANS 
Model Picker. Documentation for each model includes the details of what is calculated, 
its use, a schematic of the structure (if necessary), an example plot, and references.

Each of the model fitting functions is constructed as a Macro:Function pair. The Macro 
is called by the user (that's you) from the SANS Models menu and sets up the 
calculation, creates the coefficient table, calls the function, and draws the graph. Then 
any change in the coefficients is reflected in the model on the graph, which is 
automatically recalculated. All of the models are written in this way, so they will all 
behave the same.

Almost all of the models can be plotted and fitted to data after convolution with the 
instrumental resolution function, which is quite different for SANS and USANS data 
sets. Resolution corrections should not be ignored during data analysis. The details of 
Resolution Smearing can be found by following the link to the end of the SANS Analysis 
Documentation.

Some models are for interacting particles, where the intensity is a combination of 
form factor and structure factor effects. For hard spheres, this calculation can be 
done exactly. For other interaction potentials or anisotropic particles, 
approximations must be made. For details on how this is done, see the section: How 
Form Factors and Structure Factors are Combined

General Instructions for how to perform curve fitting to analyze your SANS data are 
found in a separate help file, SANS Data Analysis Documentation.

If you use this software to analyze your data, please reference:

"Reduction and Analysis of SANS and USANS Data Using IGOR Pro"
S. R. Kline, J. Appl. Cryst. 39 (2006) 895–900.

And be sure to reference the original reference for the model function as listed in the model 
documentation.

Model Functions for Scattering

Form Factors for Simple Shapes

Monodisperse Spheres
Core-Shell Spheres

Unilamellar Vesicles
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Multilamellar Vesicles
Polydisperse Gaussian Shell

Polydisperse Core with Constant Shell Thickness
Core-Shell with Constant Core/Shell Ratio
Core-Shell with N Shells
Polydisperse Core with N Shells
Fuzzy Spheres
Raspberry
Polydisperse Raspberry
Polydisperse Spheres:

Spheres with Rectangular Size Distribution
Spheres with Gaussian Size Distribution
Spheres with Log-Normal Size Distribution
Spheres with Schulz Size Distribution
Spheres with Bimodal Schulz Size Distribution

Monodisperse Rigid Cylinders
Cylinder with Elliptical Cross-Section
Core-Shell Cylinder
Hollow Cylinder
Cylinder - Polydisperse Length
Cylinder - Polydisperse Radius
Core-Shell Cylinder - Polydisperse Radius

Monodisperse Flexible Cylinders
Flexible Cylinder with Elliptical Cross-Section
Flexible Cylinder - Polydisperse Length
Flexible Cylinder - Polydisperse Radius

Spherocylinder (cylinder with end caps)
Barbell
Dumbbell
Capped Cylinder
Convex Lens

Ellipsoid of Revolution
Triaxial Ellipsoid
Oblate Core-Shell Ellipsoid
Prolate Core-Shell Ellipsoid

Parallelepipeds
Parallelepipeds - Core-shell

Dilute Lamellar Form Factor
Dilute Lamellar (head+tail) Form Factor
Concentrated Lamellar Form Factor
Concentrated Lamellar (head+tail) Form Factor
Stacked Disks (Tactoids)
Lamellar Paracrystal
BCC (Body-Centered Cubic) Paracrystal
FCC (Face-Centered Cubic) Paracrystal
SC (Simple Cubic) Paracrystal
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Structure Factors for Interacting Particles

Hard Sphere Structure Factor
Square Well Structure Factor
Screened Coulomb Structure Factor
Sticky Hard Sphere Structure Factor
Two-Yukawa Structure Factor

See Also: How Form Factors and Structure Factors are Combined

Interacting Particles
These are exact solutions that correctly incorporate hard sphere interactions for 
populations of hard spheres that are not monodisperse.

Polydisperse Hard Spheres
Binary Hard Spheres

Many of the form factor models above have been combined with structure factors. 
These are contained in the procedure files ending in "_Sq".

Polymer Models

Debye Model
Polydisperse Gaussian Coil
Polymer-Excluded Volume
RPA - 10 cases
Polyelectrolyte - Borue

Two-Phase Structures

Lorentz
Debye-Anderson-Brumberger
General Power-Law
Guinier-Porod
Gaussian Peak
Lorentzian Peak
Fractal with Monodisperse Spheres
Fractal with Polydisperse Spheres
Fractal with Polydisperse Core-Shell Spheres
Teubner-Strey
Unified Power-Law and Rg
Gauss-Lorentz Gel
Two Power Laws
Correlation Length Model
Two Lorentzians
Broad Peak

Anisotropic Models

Oriented Cylinder
Oriented Core-Shell Cylinder
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Oriented Elliptical Cylinder
Oriented Ellipsoid

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Form Factors for Simple Shapes

Monodisperse Spheres

MACRO : FUNCTION
PlotSphereForm() : SphereForm(w,y,x) 
Wave extension: _sf
File:

Sphere.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor, P(q), for a monodisperse spherical particle with uniform 
scattering length density. The form factor is normalized by the particle volume as 
described below. Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is:

The returned value is scaled to units of [cm-1]

Scattering contrast (Δρ) = SLD (core) - SLD (solvent)
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w[0] (scale) and w[2] (contrast) are both multiplicative factors in the model and are 
perfectly correlated. One or both of these parameters must be held fixed during model 
fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, then the returned 
value is the scattered intensity per unit volume, I(q) = φ*P(q). However, no 
interparticle interference effects are included in this calculation.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotSphereForm(), using 128 
data points, qmin = 0.001 Å^-1,  qmax = 0.3 (Å^-1) and the above default coef_sf 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Core-Shell Spheres

MACRO : FUNCTION
PlotCoreShellSphere() : CoreShellForm(w,y,x)
Wave extension: _css 
File:

CoreShell.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998
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APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor, P(q), for a monodisperse spherical particle with a core-
shell structure. The form factor is normalized by the total particle volume.
Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is:

where , , and . The returned value is 
scaled to units of [cm-1].

w[0] (scale) and the SLD's are multiplicative factors in the model and are perfectly 
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correlated. No more than one of these parameters can be free during the model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

Scattering from monodisperse vesicles can be calculated by setting the core SLD equal to 
the solvent SLD.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotCoreShellForm(), using 256 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_css values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Unilamellar Vesicles

MACRO : FUNCTION
PlotVesicle() : VesicleForm(w,y,x)
Vesicle_Volume_N_Rg()

Wave extension: _vesicle
File:

Vesicle_UL.ipf
Requires: 

GaussUtils.ipf
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PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 13 JUL 2004

APPROVED FOR DISTRIBUTION
Derek Ho 11 AUG 2004

DESCR IPT ION
Calculates the form factor, P(q), for a monodisperse, unilamellar vesicle. The form 
factor is normalized by the volume of the shell, rather than the total particle volume. 
Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is:

where the structure is as shown below, and the following notation applies. The functional 
form is identical to a "typical" core-shell structure, except that the scattering is 
normalized by the volume that is contributing to the scattering, namely the volume of 
the shell alone. Also, the vesicle is best defined in terms of a core radius (= R1) and a 
shell thickness, t. Then the radii  R1 and  R1 are defined as:

and
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With this normalization, if the scale factor is set to be the volume fraction of the "shell" 
material (for example, the total lipid volume fraction) then the calculated intensity is 
the macroscopic cross section. This volume fraction is NOT the volume that the vesicles 
exclude in the solution in the context of excluded volume interactions. Distributing a 
certain volume fraction of material, φ, in identical vesicles with shell volume Vshell, 
yields the number density of vesicles, n = φ/Vshell. The number density of vesicles is 
calculated in the macro provided. The volume fraction of solution occupied (excluded) by 
the vesicles is larger (often much larger!) and is calculated as φ(excluded) = n*Vtotal. 
This volume fraction should be used for any calculation of the interparticle structure 
factor (and is already done for you in models that combine this vesicle model with S(q) 
models).

The macro provided, Vesicle_Volume_N_Rg(), calculates the volume of the vesicle, the 
number density of vesicles, the excluded volume of the vesicles, along with I(q=0) and 
Rg.

For a general core-shell sphere, Rg is given by:

R1 and R2 are as defined above, and denote the core radius and the total radius, 
respectively. So for vesicle with SLD(1) = SLD(solvent), this reduces to:
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The scattered intensity at q=0 is given by:

Note that I(q=0) for a vesicle depends only on the volume of the shell, not the overall 
volume of the vesicle. I(0) depends on the "dry" volume of scattering particles and does 
not depend on solvation, or how much the particle is swollen with solvent. This applies to 
any particle swollen with solvent.

w[0] (scale) and the contrast  ( =  solvent SLD - shell SLD) are multiplicative factors 
in the model and are perfectly correlated. No more than one of these parameters can be 
free during the model fitting.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotVesicle(), using 128 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_vesicle values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Mult i lamel lar Vesicles

MACRO : FUNCTION
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PlotMultiShellSphere() : MultiShellForm(w,y,x) 
Wave extension: _mss
File:

MultiShell.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Charlie Glinka 21 NOV 2003

DESCR IPT ION
Calculates the form factor for monodisperse spherical particles made up of a solvent-
filled core with N shells.  The shells are interleaved with layers of solvent.  For N=1, 
this is a model for a unilamellar vesicle, i.e. solvent core plus one shell (representing, 
e.g. a lipid bilayer), and surrounded by solvent.  N > 1 corresponds to a multilamellar 
vesicle.  

 
The resolution smeared version gives the most appropriate view of the model. Note that 
the resolution smearing calculation uses 76 Gauss quadrature points to properly smear 
the model since the function is HIGHLY oscillatory, especially around the q-values that 
correspond to the repeat distance of the layers. This can make the calculations rather 
slow.

VARIABLES

11



Input Variables (default values):

USAGE NOTES

The value returned by the fitting routine for the number of water/shell pairs will be a 
floating point number. The physical reality must be an integer number of layers. In the 
model function, the value is truncated so that only the integer portion is used. That is 
5.95 "pairs" is actually calculating the scattering for 5 pairs.

The returned value is scaled to units of [cm-1]

If the scale factor w[0] is set equal to the particle volume fraction, φ, then the returned 
value is the scattered intensity per unit volume, I(q) = φ*P(q). However, no 
interparticle interference effects are included in this calculation.

IMPORTANT:
This is a highly non-linear model function, complicated by the fact that the number of 
water/shell pairs must physically be an integer value, although the optimization treats 
it as a floating point value. For the best possible experience:

- Start with the best possible guess
- Using a priori knowledge, hold as many parameters fixed as possible
- if N=1, tw (water thickness) must by definition be zero. Both N and tw must be 

fixed during fitting. 
- If N>1, use constraints to keep N > 1 (set this up in the curve fitting dialog)
- To force N to "move" during fitting, you may need to set an "epsilon" wave to 

force a larger step in that direction. epsilon = 0.001 is good for all parameters other 
than N, which should be set to 1. (set this up in the curve fitting dialog)

REFERENCE
Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New Methods of 
Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed. R. Zana, M. Dekker, New 
York, 1987.

TEST DATASET
This example dataset is produced by running the Macro PlotMultiShellSphere(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_mss 
values.
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As a further example, shown below is a fit of SANS data for a 1.0 vol % solution of the 
nearly spherical, hollow protein Apoferritin in D2O, using the multi-spherical shell 
model.  These same data are used in the SANS Data Analysis Tutorial, where a Spherical 
Core-Shell Model is shown to fit the data quite well.

Here the smeared multi-spherical shell is used to obtain an equally good fit. In fact, the 
two are numerically identical. In the fitting, the fixed parameters are: N (number of 
shells) = 1; tw (water layer thickness) = 0; core and solvent SLD (D2O) = 6.4 x 10-6 A-

2; and, particle volume fraction (scale) = 0.01.

Shown below are the fits and the fitted parameters for each model.

Multi-Spherical Shell model fit to SANS Apoferritin data.
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Spherical Core-Shell model fit to SANS Apoferritin data (see SANS Data 
Analysis Tutorial for details).
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polydisperse Gaussian Shell

MACRO : FUNCTION
PlotGaussianShell() : GaussianShell(w,x)

Wave extension : _GaussianShell
File:

PolyGaussShell.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a spherical shell where the scattering length density 
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distribution of the interface is treated as a Gaussian profile. The model was derived to 
describe the scattering of a microemulsion droplet in shell contrast. Could also be used 
for vesicles.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by

I(q) = P(q) S(q) + bkgd

Here, only the dilute case of S(q) =1 is considered. Thus the intensity calcalated uses 
equations (11) and (9a - 9d) from the reference below.

The SLD profile is:
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t is the standard deviation of the  Gaussian SLD profile. It is equivlaent in scattering to a 

slab of width .

The scale and the SLD's (contrast) are multiplicative factors in the model and are 
perfectly correlated. Only one of these parameters should be left free during model 
fitting.

REFERENCE
M. Gradelski, D. Langevin, L. Magid, R. Strey, J. Phys. Chem. 99 (1995) 13232-
13238.

TEST DATASET
This example dataset is produced by running the Macro PlotGaussianShell(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_GaussianShell 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polydisperse Core with Constant Shell Thickness

MACRO : FUNCTION
PlotPolyCoreForm() : PolyCoreForm(w,y,x) 
Wave extension: _pcf
File:

PolyCore.ipf
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Requires: 
GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for polydispersed spherical particles with a core-shell 
structure. The spherical particles have a polydisperse core with a constant shell 
thickness. The form factor is normalized by the average particle volume such that 
P(q) = scale*<f*f>/Vol + bkg, where f is the single particle scattering amplitude, 
appropriately averaged over the Schulz distribution of radii.
Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The returned value is scaled to units of [cm-1], on absolute scale.
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w[0] (scale) is correlated with the SLD's that describe the particle. No more than one of 
these parameters can be free during model fitting.

w[2] (polydispersity) may need to be constrained to keep it within its physical limits of 
(0,1). Polydispersity, p = σ/Rc, where σ^2 is the variance of the distribution and Rc is 
the mean core radius, coef_pcf[1]. For a more complete description of the Schulz 
distribution, see: J. Hayter in "Physics of Amphiphiles - Micelles, Vesicles and 
Microemulsions" V. DeGiorgio and M. Corti, Eds. (1983) p. 69.

The returned form factor is normalized by the average particle volume <V>:

 where

and z is the width parameter of the Schulz distribution, .

Setting the SLD of the core and shell equal to simulate a uniform sphere results in a 
mathematical (divide by zero) error - and no model is plotted. To simulate a uniform 
SLD sphere, set the shell thickness to zero (the SLD of the shell will now make no 
contribution to the scattering).

The average particle diameter is 2*(Radius + shell thickness)

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). 

No interparticle interference effects are included in this calculation. 

This function is useful for vesicles or liposomes by setting the SLD (core) = SLD 
(solvent), thus calculating scattering from a spherical shell with constant thickness, 
but polydisperse inner radius.

REFERENCE
Bartlett, P.; Ottewill, R. H. J. Chem. Phys., 1992, 96, 3306.

TEST DATASET
This example dataset is produced by running the Macro PlotPolyCoreForm(), using 256 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_pcf values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Core-Shell with Constant Core/Shell Ratio

MACRO : FUNCTION
PlotPolyCoreShellRatio() : PolyCoreShellRatio(w,y,x) 
Wave extension: _pcr
File:

PolyCoreShellRatio.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a polydisperse spherical particle with a core-shell 
structure. In this model, the ratio R(core)/R(core+shell) is held constant. The form 
factor is normalized by the mean particle volume such that 
P(q) = scale*<f^2>/Vol + bkg, where f is the single particle scattering amplitude and 
the average < > is over a Schulz distribution of radii. Resolution smeared version is also 
provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1], on absolute scale.

w[0] (scale) is correlated with the SLD's that describe the particle. No more than one of 
these parameters can be free during model fitting.

w[2] (polydispersity) may need to be constrained to keep it within its physical limits of 
(0,1). Polydispersity, p = σ/Rt, where σ^2 is the variance of the distribution and Rt is 
the total particle radius, Rt = Rc +t. For a more complete description of the Schulz 
distribution, see: J. Hayter in "Physics of Amphiphiles - Micelles, Vesicles and 
Microemulsions" V. DeGiorgio and M. Corti, Eds. (1983) p. 69.

The returned form factor is normalized by the average particle volume <V>:

 where  and here r denotes the total particle 

radius, Rc +t, and z is the width parameter of the Schulz distribution, .

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.
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REFERENCE
J. B. Hayter in  "Physics of Amphiphiles--Micelles, Vesicles, and Microemulsions"  Eds.  
V. DeGiorgio;  M. Corti, pp. 59-93,1983. Eqns: 32-37

TEST DATASET
This example dataset is produced by running the Macro PlotPolyCoreShellRatio(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_pcr 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Core-Shell with N shells

MACRO : FUNCTION
PlotOneShell() : OneShell(w,x)
PlotTwoShell() : TwoShell(w,x)
PlotThreeShell() : ThreeShell(w,x)
PlotFourShell() : FourShell(w,x)

Wave extension : _OneShell
Wave extension : _TwoShell
Wave extension : _ThreeShell
Wave extension : _FourShell

File:
Core_and_NShells.ipf

Requires: 

AUTHOR/MODIFICATION
Andrew Jackson JUN 2008
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APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculates the scattering from monodisperse core-shell structures. Four models are 
included. Each has a core of a specified radius, with either one, two, three, or four shells 
of constant thickness. The SLDs of the core and each shell are individually specified.

VARIABLES
Input Variables (default values, shown for the ThreeShell calculation only):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

This model is a trivial extension of the CoreShell function to a larger number of shells. 
See the CoreShell function for a diagram and documentation.

Be careful that the SLDs and scale can be highly correlated. Hold as many of these fixed as 
possible.

REFERENCE

See the CoreShell documentation.

TEST DATASET

This example dataset is produced by running the Macro ThreeShell(), using 200 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_ThreeShell values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polydisperse Core with N Shells

MACRO : FUNCTION
PlotPolyOneShell() : PolyOneShell(w,x)
PlotPolyTwoShell() : PolyTwoShell(w,x)
PlotPolyThreeShell() : PolyThreeShell(w,x)
PlotPolyFourShell() : PolyFourShell(w,x)

Wave extension : _PolyOneShell
Wave extension : _PolyTwoShell
Wave extension : _PolyThreeShell
Wave extension : _PolyFourShell

File:
PolyCore_and_NShells.ipf

Requires: 

AUTHOR/MODIFICATION
Andrew Jackson JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008
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DESCR IPT ION

Calculates the scattering from polydisperse core-shell structures. Four models are 
included. Each has a polydisperse core of a specified radius and polydispersity, with 
either one, two, three, or four shells of constant thickness. The SLDs of the core and each 
shell are individually specified.

VARIABLES
Input Variables (default values, shown for the PolyThreeShell calculation only):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

This model is an extension of the PolyCore function to a larger number of shells. The 
average over the core radius distribution is calculated numerically. See the PolyCore 
function for a diagram and documentation.

Be careful that the SLDs and scale can be highly correlated. Hold as many of these fixed as 
possible.

REFERENCE

See the PolyCore documentation.

TEST DATASET

This example dataset is produced by running the Macro PolyThreeShell(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default 
coef_PolyThreeShell values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fuzzy Spheres

MACRO : FUNCTION
PlotFuzzySpheres() : FuzzySpheres(w,x)

Wave extension : _fuzz

File:
FuzzySpheres.ipf

Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2009

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2009

DESCR IPT ION

Calculates the scattering from spherical particles with a "fuzzy" interface. There is a 
Gaussian distribution of the particle radius. A Lorentzian term that accounts for the 
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fluctuations in the microgel network is also included.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as the typical sphere scattering convoluted with a 
Gaussian to get a gradual drop-off in the scattering length density:

The < > brackets denote an average over the size distribution. <A^2(q)> is then the form 
factor, P(q). The scale factor is equivalent to the volume fraction of spheres, each of 
volume, V. Contrast is the difference of scattering length densities of the sphere and the 
surrounding solvent. If the FuzzySphere model is plotted, S(q) =1, and there are no 
interparticle interactions.

The Lorentzian term accounts for the fluctuations arising from the microgel network, 
with ξ being the correlation length of the fluctuations, which is related to the blob or 
mesh size in the network

(direct from the reference)
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The "fuzziness" of the interface is defined by the parameter (sigma)surf. The particle 
radius R represents the radius of the particle where the scattering length density profile 
decreased to 1/2 of the core density. (sigma)surf is the width of the smeared particle 
surface. The inner regions of the microgel that display a higher density are described by 
the radial box profile extending to a radius of approximately Rbox ~ R - 2(sigma). In 
dilute solution, the profile approaches zero as Rsans ~ R + 2(sigma).

REFERENCE

M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 (2004) 7283-
7292.

TEST DATASET

This example dataset is produced by running the Macro FuzzySphere(), using 128 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_fuzz values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

R a spbe r r y

MACRO : FUNCTION
PlotRaspberry() : Raspberry(w,x) 
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Wave extension : _Raspberry
File:

Raspberry.ipf

Additional Macros: 
CalcRaspberryStats()

AUTHOR/MODIFICATION
Andrew Jackson 06 JUL 2010

APPROVED FOR DISTRIBUTION
Steve Kline 14 JUL2010

DESCR IPT ION
Calculates the form factor, P(q), for a "Raspberry-like" structure where there are 
smaller spheres at the surface of a larger sphere, such as the structure of a Pickering 
emulsion. A resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The structure is:
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Ro = the radius of the "large" sphere
Rp = the radius of the smaller sphere on the surface
del = the fractional penetration depth
surface coverage = fractional coverage of the large sphere surface (0.9 max)

The large and small spheres have their own SLD, as well as the solvent. The surface 
coverage term is a fractional coverage (maximum of approximately 0.9 for hexagonally 
packed spheres on a surface). Since not all of the small spheres are necessarily attached 
to the surface, the excess free (small) spheres scattering is also included in the 
calculation. The function calculated follows equations (8)-(12) of the reference below, 
and the equations are not reproduced here.

The raspberry model is not designed for the case where the small particle is highly 
polydisperse, since it is expected that the surface adsorption will preferentially adsorb 
the larger particles.

The returned value is scaled to units of [cm-1]. No interparticle scattering is included in 
this model.

An additional macro is included that calculates the fraction of small particles that are on 
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the surface of the larger particles and the number of small particles on the surface of 
each large particle (on average).

REFERENCE
Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle scattering 
model for Pickering emulsions and raspberry particles." Journal of Colloid and Interface 
Science (2010) vol. 343 (1) pp. 36-41.

TEST DATASET
This example dataset is produced by running the Macro PlotRaspberryForm(), using the 
default 500 data points, qmin = 1e-5 Å^-1,  qmax = 0.7 (Å^-1) and the above default 
coef_Raspberry values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polydisperse Raspberry

MACRO : FUNCTION
PlotPolyRaspberry() : PolyRaspberry(w,x) 
Wave extension : _PolyRaspberry
File:

PolyRaspberry.ipf
Requires:

Raspberry.ipf
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Additional Macros: 
CalcRaspberryStats()
PlotRaspDistribution()

AUTHOR/MODIFICATION
Andrew Jackson 06 JUL 2010

APPROVED FOR DISTRIBUTION
Steve Kline 14 JUL2010

DESCR IPT ION
Calculates the form factor, P(q), for a "Raspberry-like" structure where there are 
smaller spheres at the surface of a larger sphere, such as the structure of a Pickering 
emulsion. The larger sphere may be polydisperse in radius. A Resolution smeared 
version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The structure is:
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Ro = the radius of the "large" sphere
Rp = the radius of the smaller sphere on the surface
pd = polydispersity (Gaussian distribution)  = sigmaR/Ravg
del = the fractional penetration depth
surface coverage = fractional coverage of the large sphere surface (0.9 max)

The large and small spheres have their own SLD, as well as the solvent. The surface 
coverage term is a fractional coverage (maximum of approximately 0.9 for hexagonally 
packed spheres on a surface). Since not all of the small spheres are necessarily attached 
to the surface, the excess free (small) spheres scattering is also included in the 
calculation. The function calculated follows equations (8)-(16) of the reference below, 
and the equations are not reproduced here.

The raspberry model is not designed for the case where the small particle is highly 
polydisperse, since it is expected that the surface adsorption will preferentially adsorb 
the larger particles.

The returned value is scaled to units of [cm-1]. No interparticle scattering is included in 
this model.
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An additional macro is included that calculates the fraction of small particles that are on 
the surface of the larger particles and the number of small particles on the surface of 
each large particle (on average). Also, the size distribution of the larger sphere 
(number fraction versus radius) can be plotted. Both macros use the current parameter 
values and must be recalculated as the parameters are changed.

REFERENCE
Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle scattering 
model for Pickering emulsions and raspberry particles." Journal of Colloid and Interface 
Science (2010) vol. 343 (1) pp. 36-41.

TEST DATASET
This example dataset is produced by running the Macro PlotPolyRaspberryForm(), 
using the default 500 data points, qmin = 1e-5 Å^-1,  qmax = 0.7 (Å^-1) and the above 
default coef_PolyRaspberry values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spheres with Rectangular Size Distribution

MACRO : FUNCTION
PlotPolyRectSpheres() : PolyRectSpheres(w,y,x) 
Wave extension: _rect
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File:
PolyRectSphere.ipf

Requires: 
GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 20 JAN 1999

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a polydisperse population of spheres with uniform 
scattering length density. The distribution of radii is a rectangular (box) distribution.  
The form factor is normalized by the average particle volume such that P(q) = 
scale*<F*F>/Vol + bkg, where F is the scattering amplitude of a sphere and the < > 
denote an average over the size distribution. Resolution smeared version is also 
provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1], absolute scale.

contrast = SLD (sphere) - SLD (solvent)

The (normalized) rectangular distribution is: 

with the constraint that w <= R. Here R is the average radius specified by coef[1] above.

R is the mean of the distribution and w is the half-width. The root mean square deviation 

is . The polydispersity, .

The form factor is normalized by the average volume, using 

. 
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The intensity at q=0 is given by:

and the (polydisperse) radius of gyration is:

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

w[0] (scale) and contrast are multiplicative factors in the model and are perfectly 
correlated. Only one of these parameters should be left free during model fitting.

REFERENCE
Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.

TEST DATASET
This example dataset is produced by running the Macro PlotPolyRectSpheres(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_rect 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spheres with Gaussian Size Distribution

MACRO : FUNCTION
PlotGaussPolySphere() : GaussPolySphere(w,y,x)
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NumberDensity_Gauss()
PlotGaussDistribution() 

Wave extension: _pgs
File:

GaussSpheres.ipf
Requires: 

GaussUtils.ipf
Sphere.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002

APPROVED FOR DISTRIBUTION
John Barker 15 DEC 2003

DESCR IPT ION
Calculates the scattering for a polydisperse population of spheres with uniform 
scattering length density. The distribution of radii is a Gaussian (normal) distribution.  
The intensity is normalized by the average particle volume such that I(q) = 
scale*<F*F>/<Vol> + bkg, where F is the scattering amplitude of a sphere and the < > 
denote an average over the size distribution. Resolution smeared version is also 
provided.

Additionally, two macros are provided to (1) calculate the number density based on the 
volume fraction and polydisperse particle volume (weighted using the 3rd moment of the 
radius) and (2) plot the normalized probability distribution as a function of radius.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The (normalized) Gaussian distribution is: 

Here Ravg is the average radius specified by coef[1] above and the polydispersity, p = 
σ/Ravg. Note that the distribution can extend to negative radii for large polydispersity. In 
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this case the calculated intensity will not be a true reflection of the size distribution. 
The distribution can be plotted for the radius and polydispersity in the coef_pgs wave 
using the macro "PlotGaussDistribution()".

The Nth  moment of size distribution is equal to 

where the coefficients Ai can be extracted from

The form factor is normalized by the average volume, using 

. 

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the differential macroscopic scattering cross-section (scattered cross-section per 
unit sample volume per unit solid angle).

where N0 is the total number of particles per unit volume,  and Δρ = w[3]-w[4], is the 
difference in scattering length density.  The number of particles per unit volume having 
size between R and R+dR is equal to N(R)dR = N0f(R)dR.  The Macro 
PlotGaussDistribution plots the function f(R) vs R.

 The scattering amplitude for a sphere is 

However, no interparticle interference effects are included in this calculation.  
Interparticle interference S(q) should be included by

I(q) = N0  S(q) P(q)   

where P(q) is the form factor.  Some other relations of interest are:

N0 = φ / <V>

Guinier radius:

Total interfacial surface area per unit sample volume:
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The forward scattering cross-section:

  

These values are calculated using the macro "NumberDensity_Gauss()" and use the 
current values in the coef_pgs wave.

W[0] (volume fraction or arbitrary scale) and (W[3]-W[4])2 (contrast) are 
multiplicative factors in the model and are perfectly correlated. Only one of these three 
parameters should be left free during model fitting.  

REFERENCE
none.

TEST DATASET
This example dataset is produced by running the Macro PlotGaussPolySphere(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_pgs 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spheres with Log-Normal Size Distribution

MACRO : FUNCTION
PlotLogNormalPolySphere() : LogNormalPolySphere(w,y,x)
NumberDensity_LogN()
PlotLogNormalDistribution()

Wave extension: _lns
File:

LogNormalSphere.ipf
Requires: 

GaussUtils.ipf
Sphere.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002

APPROVED FOR DISTRIBUTION
John Barker 10 Nov 2003

DESCR IPT ION
Calculates the scattering for a polydisperse population of spheres with uniform 
scattering length density. The distribution of radii is a LogNormal distribution.  The 
intensity is normalized by the average particle volume such that I(q) = 
scale*<F*F>/<Vol> + bkg, where F is the scattering amplitude of a sphere and the < > 
denote an average over the size distribution. Resolution smeared version is also 
provided.

Additionally, two macros are provided to (1) calculate the number density based on the 
volume fraction and polydisperse particle volume (weighted using the 3rd moment of the 
radius) and (2) plot the normalized probability distribution as a function of radius.

VARIABLES
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Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The (normalized) LogNormal distribution is: 

Here µ = ln(Rmed ), where Rmed is the median radius specified by W[1] above and the 
polydispersity is given by σ. Note that the distribution is strictly positive for any 
polydispersity. The distribution can be plotted for the radius and polydispersity in the 
coef_lns wave using the macro "PlotLogNormalDistribution()".

The Nth  moment of size distribution is equal to 

The form factor is normalized by the average volume, using the 3rd moment of R:

. 

If the scale factor W[0] is set equal to the particle volume fraction,  φ, the returned 
value is the differential macroscopic scattering cross-section (scattered cross-section 
per unit sample volume per unit solid angle).  

where N0 is the total number of particles per unit volume,  and Δρ = w[3]-w[4], is the 
difference in scattering length density.  The number of particles per unit volume having 
size between R and R+dR is equal to N(R)dR = N0f(R)dR.  The Macro 
PlotLogNormalDistribution plots the function f(R) vs R.

 The scattering amplitude for a sphere is 
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However, no interparticle interference effects are included in this calculation.  
Interparticle interference S(q) should be included by

I(q) = N0  S(q) P(q)   

where P(q) is the form factor.  Some other relations of interest are:

N0 = φ / <V>

The mean radius:

The peak in the size distribution occurs at radius:

Guinier radius:

 

Total interfacial surface area per unit sample volume:

The forward scattering cross-section:

 

These values are calculated using the macro "NumberDensity_LogN()" and use the 
current values in the coef_lns wave.

W[0] (volume fraction or arbitrary scale) and (W[3]-W[4])2 (contrast) are 
multiplicative factors in the model and are perfectly correlated. Only one of these three 
parameters should be left free during model fitting.  

REFERENCE
none.

TEST DATASET
This example dataset is produced by running the Macro PlotLogNormalPolySphere(), 
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using 128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_lns 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spheres with Schulz Size Distribution

MACRO : FUNCTION
PlotSchulzPolySpheres() : SchulzSpheres(w,y,x)
NumberDensity_Schulz()
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PlotSchulzDistribution() 

Wave extension : _sch
File:

SchulzSpheres.ipf
Requires: 

GaussUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002

APPROVED FOR DISTRIBUTION
John Barker 6 Nov 2003

DESCR IPT ION
Calculates the scattering for a polydisperse population of spheres with uniform 
scattering length density. The distribution of radii is a Schulz distribution.  The 
Intensity is normalized by the average particle volume such that I(q) = 
scale*<F*F>/<Vol> + bkg, where F is the scattering amplitude of a sphere and the < > 
denote an average over the size distribution. Resolution smeared version is also 
provided.

Additionally, two macros are provided to (1) calculate the number density based on the 
volume fraction and polydisperse particle volume (weighted using the 3rd moment of the 
radius) and (2) plot the normalized probability distribution as a function of radius.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The (normalized) Schulz distribution is: 

where Ravg is the mean radius specified by W[1] above and x = R/Ravg , z is related to the 

44



polydispersity, p = σ/Ravg , by z = 1/p2 - 1.  σ2 is the variance of the distribution. The 
distribution can be plotted for the radius and polydispersity in the coef_sch wave using 
the macro "PlotSchulzDistribution()".

The Nth moment of size distribution is equal to

The form factor is normalized by the average volume, using the 3rd moment of R:

. 

If the scale factor W[0] is set equal to the particle volume fraction,  φ, the returned 
value is the differential macroscopic scattering cross-section (scattered cross-section 
per unit sample volume per unit solid angle).  

where N0 is the total number of particles per unit volume,  and Δρ = w[3]-w[4], is the 
difference in scattering length density.  The number of particles per unit volume having 
size between R and R+dR is equal to N(R)dR = N0f(R)dR.  The Macro 
PlotSchulzDistribution plots the function f(R) vs R.

 The scattering amplitude for a sphere is 

However, no interparticle interference effects are included in this calculation.  
Interparticle interference S(q) should be included by

I(q) = N0  S(q) P(q)   

where P(q) is the form factor.  Some other relations of interest are:

N0 = φ / <V>

Guinier radius:
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Total interfacial surface area per unit sample volume:

The forward scattering cross-section:

 

These values are calculated using the macro "NumberDensity_Schulz()" and use the 
current values in the coef_sch wave.

W[0] (volume fraction or arbitrary scale) and (W[3]-W[4])2 (contrast) are 
multiplicative factors in the model and are perfectly correlated. Only one of these three 
parameters should be left free during model fitting.  W[2] (polydispersity (p)) must be 
between 0 < p < 1.

NOTE that this calculation is an analytic solution and is much faster to compute than the 
Log Normal or Gaussian distributions of spheres which are both numerical solutions.

REFERENCE
G. V. Schulz, Z. Phys. Chem., 43 (1935) 25.
M. Kotlarchyk and S-H. Chen, J. Chem. Phys. 79 (1983) 2461-2469, eqn 25-29.

TEST DATASET
This example dataset is produced by running the Macro PlotSchulzPolySpheres(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_sch 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spheres with Bimodal Schulz Size Distribution

MACRO : FUNCTION
PlotBimodalSchulzSpheres() : BimodalSchulzSpheres(w,y,x)
NumberDensity_Bimodal()
Plot_Bimodal_Distribution() 
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Wave extension : _bss
File:

BimodalSchulzSpheres.ipf
Requires: 

SchulzSpheres.ipf
GaussUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002

APPROVED FOR DISTRIBUTION
John Barker 6 NOV 2003

DESCR IPT ION
Calculates the scattering for a bidisperse population of spheres with uniform scattering 
length density. Each population of spheres is polydisperse with a distribution of radii 
obeying a Schulz distribution.  The Intensity is normalized by the average particle 
volume such that I(q) = scale*<F*F>/<Vol> + bkg, where F is the scattering amplitude of 
a sphere and the < > denote an average over the size distribution. Resolution smeared 
version is also provided.

Additionally, two macros are provided to (1) calculate the number density based on the 
volume fraction and polydisperse particle volume (weighted using the 3rd moment of the 
radius) and (2) plot the normalized probability distribution as a function of radius.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The subscripts (1) and (2) refer to the two populations. Each population has a Schulz 
distribution of radii, and the following description follows the documentation for the 
Schulz Spheres.
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The (normalized) Schulz distribution is: 

where Ravg is the mean radius specified by W[1] above and x = R/Ravg , z is related to the 

polydispersity, p = σ/Ravg , by z = 1/p2 - 1.  σ2 is the variance of the distribution. The 
distribution can be plotted for the radius and polydispersity in the coef_bss wave using 
the macro "Plot_Bimodal_Distribution()".

The Nth moment of size distribution is equal to

The form factor is normalized by the average volume, using the 3rd moment of R:

The variables w[0] and w[4] are the volume fraction of each of the populations, the total 
volume fraction is the sum. Since there are two populations, there is no scale factor as 
in other models. The returned value is the differential macroscopic scattering cross-
section (scattered cross-section per unit sample volume per unit solid angle).  

where N0 is the total number of particles per unit volume,  and Δρ = w[3]-w[8] or 
w[7] - w[8], is the difference in scattering length density.  The number of particles per 
unit volume having size between R and R+dR is equal to N(R)dR = N0f(R)dR.  The Macro 
Plot_Bimodal_Distribution plots the function f(R) vs R.

 The scattering amplitude for a sphere is 

However, no interparticle interference effects are included in this calculation.  
Interparticle interference S(q) should be included by

I(q) = N0  S(q) P(q)   

where P(q) is the form factor.  Some other relations of interest are:
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N0 = φ / <V>

Guinier radius:

 

Total interfacial surface area per unit sample volume:

The forward scattering cross-section:

 

These values are calculated using the macro "NumberDensity_Bimodal()" and use the 
current values in the coef_bss wave.

w[2] and w[6](polydispersity (p)) must be between 0 < p < 1.

NOTE that this calculation is an analytic solution and is much faster to compute than the 
Log Normal or Gaussian distributions of spheres which are both numerical solutions.

REFERENCE
G. V. Schulz, Z. Phys. Chem., 43 (1935) 25.
M. Kotlarchyk and S-H. Chen, J. Chem. Phys. 79 (1983) 2461-2469, eqn 25-29.

TEST DATASET
This example dataset is produced by running the Macro PlotBimodalSchulzSpheres(), 
using 128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_bss 
values.
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(note the logarithmic Y-axis on the plot of the distribution)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Monodisperse Rigid Cylinders

MACRO : FUNCTION
PlotCylinderForm() : CylinderForm(w,y,x) 
Wave extension: _cyl
File:
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Cylinder.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
Function cyl(), included in CylinderForm.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a monodisperse right circular cylinder with uniform 
scattering length density. The form factor is normalized by the particle volume such that 
P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all possible orientations of 
the cylinder. Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is:

and

where J1(x) is the first order Bessel function. Alpha is defined as the angle between the 
cylinder axis and the scattering vector, q. The integral over alpha averages the form 
factor over all possible orientations of the cylinder with respect to q. The returned value 
is in units of [cm-1], on absolute scale.
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Scattering contrast (Δρ) = SLD (cylinder) - SLD (solvent)

The scale and scattering length densities (the contrast) are both multiplicative factors 
in the model and are perfectly correlated. One or both of these parameters must be held 
fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

76-point Gaussian quadrature is used to calculate the form factor. This calcualtion will 
be slow (approximately 10 seconds) on older machines. The smearing calculation is an 
additional numerical integration (20-point quadrature) and will further slow the 
update of the graph.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotCylinderForm(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_cyl values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Cylinder with Elliptical Cross-Section

MACRO : FUNCTION
PlotEllipCylinderForm() : EllipCylForm(w,y,x) 
Wave extension: _ecf
File:

EllipticalCylinder.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 5 DEC 2000

APPROVED FOR DISTRIBUTION
Derek Ho 2 DEC 2003

DESCR IPT ION
Calculates the form factor for a cylinder with uniform scattering length density and an 
elliptical cross section. The form factor is normalized by the particle volume such that 
P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all possible orientations of 
the cylinder. An instrument resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The function calculated is:

with the functions:

and J1(x) is the first order Bessel function. The returned value is in units of [cm-1], on 
absolute scale. The elliptical cylinder is as depicted in the figure, with a total length H, 
minor radius a, and major radius va. The ellipticity (parameter 2) is defined as: 

The volume and radius of gyration of the cylinder is given by:
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Scattering contrast (Δρ) = SLD (cylinder) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 
Scattering”, Plenum, New York, 1987.

TEST DATASET
This example dataset is produced by running the Macro PlotEllipCylinderForm(), using 
50 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_ecf values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Core-Shel l  Cyl inder

MACRO : FUNCTION
PlotCoreShellCylinderForm() : CoreShellCylinderForm(w,y,x) 
Wave extension: _cscyl
File:

CoreShellCylinder.ipf
Requires: 
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GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 20 JAN 1999

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a monodisperse, right circular cylinder with a core-shell 
scattering length density profile. The shell thickness, t, is considered to be uniform over 
the entire surface of the core.  The form factor is normalized by the total particle 
volume such that P(q) = scale*<f*f>/Vol + bkg, where f is the scattering amplitude and 
the < > denote an average over all possible orientations of the cylinder. Resolution 
smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated  is:

,  and

where r is the radius of the core of the cylinder as shown below, and J1(x) is the first 
order bessel function. Alpha is defined as the angle between the cylinder axis and the 
scattering vector, q. The integral over alpha averages the form factor over all possible 
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orientations of the cylinder. The returned value is scaled to units of [cm-1], on absolute 
scale.

The shell thickness is uniform over the entire particle. This means that for the default 
case above, the total diameter of the cylinder is 2*20 + 2*10 = 60 A and that the total 
length is 400 + 2*10 = 420 A. The calculated cylinder volume is based on these total 
cylinder dimensions.

The contrasts in the default case correspond to scattering from a cylindrical shell.

w[0] (scale) and w[4], w[5], and w[6] (SLD's) are multiplicative factors in the model 
and are perfectly correlated. Only one of these four parameters should be left free during 
model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
I. Livsey, J. Chem. Soc. Faraday Trans. 2 (1987) 83(8) 1445-1452. Equation (3).

TEST DATASET
This example dataset is produced by running the Macro PlotCoreShellCylinderForm(), 
using 128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default 
coef_cscyl values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Hollow Cylinder

MACRO : FUNCTION
PlotHollowCylinderForm() : HollowCylinderForm(w,y,x) 
Wave extension: _Hcyl
File:

HollowCylinders.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 20 JAN 1999

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a monodisperse, hollow, right circular cylinder (or a 
tube). The inside and outside of the tube have the same scattering length density and the 
tube itself is of uniform SLD.  The form factor is normalized by the tube material 
volume ONLY such that P(q) = scale*<f*f>/Vol + bkg, where f is the scattering 
amplitude and the < > denote an average over all possible orientations of the cylinder. 
Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The function calculated is:

where J1 is the first order Bessel function. The integral over x is the orientational 

average and the returned form factor is scaled to units of [cm-1].

contrast = SLD (shell) - SLD (solvent)

The shell thickness is uniform over the cylinder radius. There is no material covering 
the ends of the tube. This mean that for the default case above, the total diameter of the 
cylinder is 2*30  = 60 A and that the total length is 400  A. The 40 A diameter core is 
assumed to be the same scattering length density as the solvent, giving no contribution to 
the scattered intensity.
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The form factor is normalized to the volume of material comprising the shell such that 

. Note that this is different than the total excluded volume of the 

hollow cylinder, which is . 

w[0] (scale) and w[4] (contrast) are multiplicative factors in the model and are 
perfectly correlated. Only one of these parameters should be left free during model 
fitting.

The user should ensure that the shell radius is always larger than the core radius.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle X-Ray and Neutron 
Scattering", Plenum Press, New York, (1987).

TEST DATASET
This example dataset is produced by running the Macro PlotHollowCylinderForm(), 
using 128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default 
coef_Hcyl values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Cylinder - Polydisperse Length

MACRO : FUNCTION
PlotCyl_PolyLength() : Cyl_PolyLength(w,y,x) 
Wave extension: _cypl
File:
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Cylinder_PolyLength.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
Cylinder.ipf

AUTHOR/MODIFICATION
Steve Kline 5 DEC 2000

APPROVED FOR DISTRIBUTION
Derek Ho 2 DEC 2003

DESCR IPT ION
Calculates the form factor for a polydisperse right circular cylinder with uniform 
scattering length density. A Schulz polydispersity of the cylinder length is considered. 
The form factor is normalized by the particle volume such that P(q) = scale*<f^2>/Vol 
+ bkg, where < > is an average over all possible orientations of the cylinder. The form 
factor is then averaged over the normalized size distribution. An instrument resolution 
smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is the orientationally averaged cylinder form factor which is 
then averaged over a Schulz distribution of the cylinder length. See the documentation 
for the cylinder form factor for details of the monodisperse calculation. The 
polydispersity is included by integrating the form factor over a Schulz distribution of 
cylinder length. The integration has been normalized by the first moment of the length 
distribution. This insures that the invariant is constant when the polydispersity is 
varied and all other structural parameters are held fixed.

Polydispersity of the cylinder length usually has little effect on the scattered intensity, 
and is only (weakly) visible at low enough q-values that correspond to the average 
cylinder length.

The size averaged form factor is thus:
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where f(r) is the normalized Schulz distribution of the length. The limits of the 
integration are adjusted automatically to cover the full range of length. The scattering 
amplitude, F, is:

See the Schulz Spheres documentation for the definition of the Schulz distribution and 
associated moments. The calculation is normalized to the polydisperse volume using the 
first moment. See also the the documentation for the cylinder form factor for the 
definition of the angles and details of the monodisperse calculation.

Scattering contrast (Δρ) = SLD (cylinder) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotCyl_PolyLength(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_cypl 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Cylinder - Polydisperse Radius

MACRO : FUNCTION
PlotCyl_PolyRadius() : Cyl_PolyRadius(w,y,x) 
Wave extension: _cypr
File:

Cylinder_PolyRadius.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
Cylinder.ipf

AUTHOR/MODIFICATION
Steve Kline 5 DEC 2000

APPROVED FOR DISTRIBUTION
Derek Ho 2 DEC 2003

DESCR IPT ION
Calculates the form factor for a polydisperse right circular cylinder with uniform 
scattering length density. A Schulz polydispersity of the cylinder radius is considered. 
The form factor is normalized by the particle volume such that P(q) = scale*<f^2>/Vol 
+ bkg, where < > is an average over all possible orientations of the cylinder. The form 
factor is then averaged over the normalized size distribution. An instrument resolution 
smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES

The function calculated is the orientationally averaged cylinder form factor which is 
then averaged over a Schulz distribution of the cylinder radius.  The polydispersity is 
included by integrating the form factor, P(q), over a Schulz distribution of cylinder 
radius. The integration has been normalized by the second moment of the radius 
distribution. This insures that the invariant is constant when the polydispersity is 
varied and all other structural parameters are held fixed. The size averaged form factor 
is thus:

where f(r) is the normalized Schulz distribution of the radius. The limits of the 
integration are adjusted automatically to cover the full range of radius. The calculation 
is normalized to the polydisperse volume using the second moment:

See the Schulz Spheres documentation for the definition of the Schulz distribution and 
associated moments. The scattering amplitude, F, is:

See the documentation for the cylinder form factor for the definition of the angles and 
details of the monodisperse calculation.

Scattering contrast (Δρ) = SLD (cylinder) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
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interference effects are included in this calculation.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This example dataset is produced by running the Macro PlotCyl_PolyRadius(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_cypr 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Core-Shell Cylinder - Polydisperse Radius

MACRO : FUNCTION
PlotPolyCoShCylinder() : PolyCoShCylinder(w,y,x)
Wave extension :   _CSCpr
File:

PolyCoreShellCylinder.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Andrew Nelson27 APR 2003

APPROVED FOR DISTRIBUTION
WeiRen Chen 01 FEB 2006

DESCR IPT ION
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This function calculates the scattering for a polydisperse, right circular cylinder with a 
core-shell scattering length density profile.  The shell thickness on the flat ends of the 
cylinder is independent of the shell thickness on the radial surface. Polydispersity of the 
cylinder core radius is modelled using a log-normal distribution. The overall intensity 
is obtained by calculating the scattering from each particle size present and weighting it 
by the normalised distribution.

VARIABLES
Input variables (default values):

USAGE NOTES
The function calculated is:

with the normalised log-normal distribution:

and
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J1(x) is the first order Bessel function. Theta is defined as the angle between the 
cylinder axis and the scattering vector, Q. The integral over theta averages the form 
factor over all possible orientations of the cylinder with respect to Q. The core radius = 
Rp, core length = Hp (the mean core radius is Ro).  Note that the shell radius and shell 
length incorporate the dimensions of the bare particle (i.e Hl = Hp + 2 * face thickness 
and  Rl = Rp + radial thickness).  Sigma is equivalent to the standard deviation of the log-
normal distribution.

The form factor P(Q) is normalised by multiplying by scale/Vp.  If scale represents the 
volume fraction of the core particles then the multiplication factor is the number 
density of particles and an absolute intensity is returned.

Note that the shell has a constant thickness around the edge of the particle. 
 
76-point Gaussian quadrature is used to calculate the form factor and 20-point Gaussian 
quadrature is used to integrate the polydispersity.  The fitting procedure is likely to run 
very slowly on old machines. 

REFERENCE

Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays"; 1 ed.; Wiley: New York, 
1955. 

TEST DATASET

This example dataset is produced by running the Macro PlotPolyCoShCylinder(), using 
100 data points, Qmin = 0.001 Å^-1, Qmax = 0.7 Å^-1 and the above default 
coef_CSCpr values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Monodisperse Flexible Cylinders

MACRO : FUNCTION
PlotFlexExclVolCyl() : FlexExclVolCyl(w,y,x)
Wave extension : _fle 
File:

FlexibleCylinder.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Wei-Ren Chen 1 JUL 2006

APPROVED FOR DISTRIBUTION
Steve Kline 15 JUL 2006

DESCR IPT ION
Calculates the form factor for a flexible cylinder with a circular cross section and a 
uniform scattering length density. The non-negligible diameter of the cylinder is 
included by accounting for excluded volume interactions within the walk of a single 
cylinder. Inter-cylinder interactions are NOT included. The form factor is normalized by 
the particle volume such that P(q) = scale*<f^2>/Vol + bkg, where < > is an average 
over all possible orientations of the flexible cylinder. An instrument resolution smeared 
version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is from the reference given below. From that paper, "Method 3 
With Excluded Volume" is used. The model is a parametrization of simulations of a 
discrete representation of the worm-like chain model of Kratky and Porod applied in the 
pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 
details.

NOTE: there are several typos in the original reference that have been corrected by 
WRC. Details of the corrections are in the reference below.
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 - Equation (13): the term (1-w(QR)) should swap position with w(QR)
 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and 
solved analytically. The results were converted to code.
 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 
max(a3*b/sqrt(RgSquare),3)
 - The scattering function is negative for a range of parameter values and q-values that 
are experimentally accessible. A correction function has been added to give the proper 
behavior.

The chain of contour length, L, (the total length) can be described a chain of some 
number of locally stiff segments of length lp. The persistence length,lp, is the length 
along the cylinder over which the flexible cylinder can be considered a rigid rod. the 
Kuhn length (b) used in the model is also used to describe the stiffness of a chain, and is 
simply b = 2*lp.

The returned value is in units of [cm-1], on absolute scale.

Scattering contrast (Δρ) = SLD (chain) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible 
polymers with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Corrections are in:

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar 
Interactions in the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, 
August 2006.

TEST DATASET
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This example dataset is produced by running the Macro PlotFlexExclVolCyl(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_fle values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Flexible Cylinder with Elliptical Cross-Section

MACRO : FUNCTION
PlotFlexCyl_Ellip() : FlexCyl_Ellip(w,y,x)
Wave extension : _fleell 
File:

FlexCyl_EllipCross.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Wei-Ren Chen 1 JUL 2006

APPROVED FOR DISTRIBUTION
Steve Kline 15 JUL 2006

DESCR IPT ION
Calculates the form factor for a flexible cylinder with an elliptical cross section and a 
uniform scattering length density. The non-negligible diameter of the cylinder is 
included by accounting for excluded volume interactions within the walk of a single 
cylinder. Inter-cylinder interactions are NOT included. The form factor is normalized by 
the particle volume such that P(q) = scale*<f^2>/Vol + bkg, where < > is an average 
over all possible orientations of the flexible cylinder. An instrument resolution smeared 
version is also provided.
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VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is from the reference given below. From that paper, "Method 3 
With Excluded Volume" is used. The model is a parametrization of simulations of a 
discrete representation of the worm-like chain model of Kratky and Porod applied in the 
pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 
details.

NOTE: there are several typos in the original reference that have been corrected by 
WRC. Details of the corrections are in the reference below.
 - Equation (13): the term (1-w(QR)) should swap position with w(QR)
 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and 
solved analytically. The results were converted to code.
 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 
max(a3*b/sqrt(RgSquare),3)
 - The scattering function is negative for a range of parameter values and q-values that 
are experimentally accessible. A correction function has been added to give the proper 
behavior.

The chain of contour length, L, (the total length) can be described a chain of some 
number of locally stiff segments of length lp. The persistence length,lp, is the length 
along the cylinder over which the flexible cylinder can be considered a rigid rod. the 
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Kuhn length (b) used in the model is also used to describe the stiffness of a chain, and is 
simply b = 2*lp.

The cross section of the cylidner is elliptical, with minor radius a. The major radius is 
larger, so of course, the axis ratio (parameter 4) must be greater than one. Simple 
constraints should be applied during curve fitting to maintain this inequality.

The returned value is in units of [cm-1], on absolute scale.

Scattering contrast (Δρ) = SLD (chain) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible 
polymers with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Corrections are in:

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar 
Interactions in the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, 
August 2006.

TEST DATASET
This example dataset is produced by running the Macro PlotFlexCyl_Ellip(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_fleell values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Flexible Cylinder - Polydisperse Length

MACRO : FUNCTION
PlotFlexCyl_PolyLength() : FlexCyl_PolyLen(w,y,x) 
Wave extension : _flepl
File:

FlexCyl_PolyLen.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
FlexibleCylinder.ipf

AUTHOR/MODIFICATION
Wei-Ren Chen 1 JUL 2006

APPROVED FOR DISTRIBUTION
Steve Kline 15 JUL 2006

DESCR IPT ION
Calculates the form factor for a flexible cylinder with a circular cross section and a 
uniform scattering length density. Polydispersity of the overall contour length is 
included, using a Schulz distribution.  The non-negligible diameter of the cylinder is 
included by accounting for excluded volume interactions within the walk of a single 
cylinder. Inter-cylinder interactions are NOT included. The form factor is normalized by 
the particle volume such that P(q) = scale*<f^2>/Vol + bkg, where < > is an average 
over all possible orientations of the flexible cylinder. An instrument resolution smeared 
version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is from the reference given below. From that paper, "Method 3 
With Excluded Volume" is used. The model is a parametrization of simulations of a 
discrete representation of the worm-like chain model of Kratky and Porod applied in the 
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pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 
details.

NOTE: there are several typos in the original reference that have been corrected by 
WRC. Details of the corrections are in the reference below.
 - Equation (13): the term (1-w(QR)) should swap position with w(QR)
 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and 
solved analytically. The results were converted to code.
 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 
max(a3*b/sqrt(RgSquare),3)
 - The scattering function is negative for a range of parameter values and q-values that 
are experimentally accessible. A correction function has been added to give the proper 
behavior.

The chain of contour length, L, (the total length) can be described a chain of some 
number of locally stiff segments of length lp. The persistence length,lp, is the length 
along the cylinder over which the flexible cylinder can be considered a rigid rod. the 
Kuhn length (b) used in the model is also used to describe the stiffness of a chain, and is 
simply b = 2*lp.

Polydispersity is included by integrating the form factor over a Schulz distribution of 
cylinder contour length. The integration has been normalized by the first moment of the 
length distribution. This insures that the invariant is constant when the polydispersity 
is varied and all other structural parameters are held fixed.

The returned value is in units of [cm-1], on absolute scale.

Scattering contrast (Δρ) = SLD (chain) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
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Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible 
polymers with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Corrections are in:

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar 
Interactions in the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, 
August 2006.

TEST DATASET
This example dataset is produced by running the Macro PlotFlexCyl_PolyLength(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_flepl 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Flexible Cylinder - Polydisperse Radius

MACRO : FUNCTION
PlotFlexCyl_PolyRadius() : FlexCylPolyRad(w,y,x) 
Wave extension : _fcpr
File:

FlexCyl_PolyRadius.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
FlexibleCylinder.ipf

AUTHOR/MODIFICATION
Wei-Ren Chen 1 JUL 2006

APPROVED FOR DISTRIBUTION
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Steve Kline 15 JUL 2006

DESCR IPT ION
Calculates the form factor for a flexible cylinder with a circular cross section and a 
uniform scattering length density. Polydispersity of the cross-section is included, using 
a Schulz distribution. The non-negligible diameter of the cylinder is included by 
accounting for excluded volume interactions within the walk of a single cylinder. Inter-
cylinder interactions are NOT included. The form factor is normalized by the particle 
volume such that P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all 
possible orientations of the flexible cylinder. An instrument resolution smeared version 
is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is from the reference given below. From that paper, "Method 3 
With Excluded Volume" is used. The model is a parametrization of simulations of a 
discrete representation of the worm-like chain model of Kratky and Porod applied in the 
pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 
details.

NOTE: there are several typos in the original reference that have been corrected by 
WRC. Details of the corrections are in the reference below.
 - Equation (13): the term (1-w(QR)) should swap position with w(QR)
 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and 
solved analytically. The results were converted to code.
 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 
max(a3*b/sqrt(RgSquare),3)
 - The scattering function is negative for a range of parameter values and q-values that 
are experimentally accessible. A correction function has been added to give the proper 
behavior.
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The chain of contour length, L, (the total length) can be described a chain of some 
number of locally stiff segments of length lp. The persistence length,lp, is the length 
along the cylinder over which the flexible cylinder can be considered a rigid rod. the 
Kuhn length (b) used in the model is also used to describe the stiffness of a chain, and is 
simply b = 2*lp.

Polydispersity is included by integrating the form factor over a Schulz distribution of 
cylinder radius. The integration has been normalized by the second moment of the radius 
distribution. This insures that the invariant is constant when the polydispersity is 
varied and all other structural parameters are held fixed.

The returned value is in units of [cm-1], on absolute scale.

Scattering contrast (Δρ) = SLD (chain) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible 
polymers with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Corrections are in:

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar 
Interactions in the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, 
August 2006.

TEST DATASET
This example dataset is produced by running the Macro PlotFlexCyl_PolyRadius(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_fcpr 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spherocylinder (cylinder with end caps)

MACRO : FUNCTION
PlotSpherocylinder() : Spherocylinder(w,x)

Wave extension : _SphCyl
File:

Spherocylinder.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a cylinder with hemispherical section end-caps. That is, a 
sphereocylinder with end caps that have a radius equal to that of the cylinder. This is a 
special case of the Capped Cylinder model where R=rc and h=0. All dimensions of the 
sphereocylinder are considered to be monodisperse. See the diagram for the details of the 
geometry and restrictions on parameter values.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The Sphereocylinder geometry is defined as:

r is the radius of the cylinder. All other parameters are as defined in the diagram. The 
end cap radius R = r and by definition for this geometry h = 0.

The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as:
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The < > brackets denote an average of the structure over all orientations. <A^2(q)> is 
then the form factor, P(q). The scale factor is equivalent to the volume fraction of 
cylinders, each of volume, V. Contrast is the difference of scattering length densities of 
the cylinder and the surrounding solvent.

The volume of the Sphereocylinder is:

and its radius of gyration:

The necessary condition of R = r is  enforced in the model.

REFERENCES

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata)

TEST DATASET

This example dataset is produced by running the Macro Sphereoylinder(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_SphCyl values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

B a r b e l l

MACRO : FUNCTION
PlotBarbell() : Barbell(w,x)

Wave extension : _Barbell
File:

Barbell.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a barbell-shaped cylinder. That is, a sphereocylinder 
with spherical end caps that have a radius larger than that of the cylinder and the center 
of the end cap radius lies outside of the cylinder All dimensions of the barbell are 
considered to be monodisperse. See the diagram for the details of the geometry and 
restrictions on parameter values.

82



VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The barbell geometry is defined as:

r is the radius of the cylinder. All other parameters are as defined in the diagram. Since 
the end cap radius R >= r and by definition for this geometry h > 0,  h is then defined by 
r and R as:

h = sqrt(R^2 - r^2)

The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as:
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The < > brackets denote an average of the structure over all orientations. <A^2(q)> is 
then the form factor, P(q). The scale factor is equivalent to the volume fraction of 
cylinders, each of volume, V. Contrast is the difference of scattering length densities of 
the cylinder and the surrounding solvent.

The volume of the barbell is:

and its radius of gyration:

The necessary conditions of R >= r is not enforced in the model. It is up to you to restrict 
this during analysis.

REFERENCES

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata)

TEST DATASET

This example dataset is produced by running the Macro PlotBarbell(), using 200 data 
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points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_Barbell values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Dumbbe l l

MACRO : FUNCTION
PlotDumbbell() : Dumbbell(w,x)

Wave extension : _Dumb
File:

Dumbbell.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION
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Calculates the scattering from a dumbbell shape, sometimes called a dicolloid. This is a 
special case of the barbell model with a cylinder length of zero. The "cylinder radius" 
parameter now measures the height of the contact interface between the two spherical 
end segments. All dimensions of the dumbbell are considered to be monodisperse. See the 
diagram for the details of the geometry and restrictions on parameter values.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The dumbbell geometry is defined as:

In (a), r=R and the shape is a sphere. in (c), r=0, and the geometry is that of two 
touching spheres. In (b), where 0 < r < R, a dumbbell shape results. By definition, since 
the length of the cylinder L =0, h is:

h = sqrt(R^2 - r^2)

The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as:
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The < > brackets denote an average of the structure over all orientations. <A^2(q)> is 
then the form factor, P(q). The scale factor is equivalent to the volume fraction of 
cylinders, each of volume, V. Contrast is the difference of scattering length densities of 
the cylinder and the surrounding solvent.

The volume of the Dumbbell is:

and its radius of gyration:

The length of the cylinder is automatically set to 0.01 A for this calculation since a zero 
length cylinder is undefined. R >= r must be enforced by the user.

REFERENCES

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata)

TEST DATASET

This example dataset is produced by running the Macro Dumbbell(), using 200 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_Dumb values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Capped Cylinder

MACRO : FUNCTION
PlotCappedCylinder() : CappedCylinder(w,x)

Wave extension : _CapCyl
File:

CappedCylinder.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a cylinder with spherical section end-caps. That is, a 
sphereocylinder with end caps that have a radius larger than that of the cylinder and the 
center of the end cap radius lies within the cylinder. All dimensions of the capped 
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cylinder are considered to be monodisperse. See the diagram for the details of the 
geometry and restrictions on parameter values.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The Capped Cylinder geometry is defined as:

r is the radius of the cylinder. All other parameters are as defined in the diagram. Since 
the end cap radius R >= r and by definition for this geometry h < 0,  h is then defined by 
r and R as:

h = -1*sqrt(R^2 - r^2)
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The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as:

The < > brackets denote an average of the structure over all orientations. <A^2(q)> is 
then the form factor, P(q). The scale factor is equivalent to the volume fraction of 
cylinders, each of volume, V. Contrast is the difference of scattering length densities of 
the cylinder and the surrounding solvent.

The volume of the Capped Cylinder is:
(with h as a positive value here)

and its radius of gyration:

The necessary conditions of R >= r is not enforced in the model. It is up to you to restrict 
this during analysis.
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REFERENCES

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata)

TEST DATASET

This example dataset is produced by running the Macro CappedCylinder(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_CapCyl values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Convex Lens

MACRO : FUNCTION
PlotConvexLens() : ConvexLens(w,x)

Wave extension : _ConvLens
File:

ConvexLens.ipf
Requires: 
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AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a convex lens. All dimensions of the convex lens are 
considered to be monodisperse. This is a special case of the capped cylinder model with a 
cylinder length of zero. See the diagram for the details of the geometry and restrictions 
on parameter values.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The Convex Lens geometry is defined as (the dark lines):
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r is the radius of the lens. It has a maximum thickness of 2(R-h). By definition, since 
the length of the cylinder L =0, h is negative and is:

h = -1*sqrt(R^2 - r^2)

The scattering intensity I(q) is calculated as:

where the amplitude A(q) is given as:
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The < > brackets denote an average of the structure over all orientations. <A^2(q)> is 
then the form factor, P(q). The scale factor is equivalent to the volume fraction of 
cylinders, each of volume, V. Contrast is the difference of scattering length densities of 
the cylinder and the surrounding solvent.

The volume of the Convex Lens is:

and its radius of gyration:

The length of the cylinder is automatically set to 0.01 A for this calculation since a zero 
length cylinder is undefined. R > r must be enforced by the user.

REFERENCES

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata)

TEST DATASET

This example dataset is produced by running the Macro ConvexLens(), using 200 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_ConvLens values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ellipsoid of Revolution

MACRO : FUNCTION
PlotEllipsoidForm() : EllipsoidForm(w,y,x) 
Wave extension: _eor
File:

UniformEllipsoid.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 20 JAN 1999

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a monodisperse ellipsoid (ellipsoid of revolution) with 
uniform scattering length density. The form factor is normalized by the particle volume 
such that P(q) = scale*<f*f>/Vol + bkg, where f is the scattering amplitude and the < > 
denote an average over all possible orientations of the ellipsoid. Resolution smeared 
version is also provided.
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VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is:

and 

The returned value is scaled to units of [cm-1], on absolute scale. 

The ellipse is rotated about the axis of Ra to define the ellipsoid. If (as shown below) the 
radius Rb > Ra, the object is an oblate ellipsoid (disk-like). If Rb < Ra, then the object 
is a prolate ellipsoid (needle-like). If the two radii are equal, then the ellipsoid is a 
sphere.

If the object is an oblate ellipsoid (disk-like), it displays a limiting power-law slope of 
q-2 at low q. 
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A prolate ellipsoid (needle-like),  displays a limiting power-law slope of q-1 at low q. 

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle X-Ray and Neutron 
Scattering", Plenum Press, New York, (1987).

TEST DATASET
This example dataset is produced by running the Macro PlotEllipsoidForm(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_eor values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Tr iaxia l  E l l ipsoid

MACRO : FUNCTION
Plot_TriaxialEllipsoid() : TriaxialEllipsoid(w,y,x) 
Wave extension: _triax
File:

TriaxialEllipsoid.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
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Steve Kline 5 DEC 2000

APPROVED FOR DISTRIBUTION
Derek Ho 2 DEC 2003

DESCR IPT ION
Calculates the form factor for a triaxial ellipsoid with uniform scattering length density.  
The form factor is normalized by the particle volume such that P(q) = scale*<f^2>/Vol 
+ bkg, where < > is an average over all possible orientations of the ellipsoid. An 
instrument resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is for an ellipsoid where all three semi-axes are of different 
lengths. For the results of the calculation to be valid, the axes MUST be defined as:

then:

Where the function φ(x) is defined as:

The volume of the ellipsoid is:

and its radius of gyration is:
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The returned value is in units of [cm-1], on absolute scale.

NOTES:

Constraints must be applied during fitting to ensure that the inequality a<b<c is not 
violated. The calculation will not report an error, but the results will not be correct.

Scattering contrast (Δρ) = SLD (ellipsoid) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

REFERENCE
L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 
Scattering”, Plenum, New York, 1987.

TEST DATASET
This example dataset is produced by running the Macro Plot_TriaxialEllipsoid(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_triax 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Oblate Core-Shell Ellipsoid

MACRO : FUNCTION
PlotOblateForm() : OblateForm(w,y,x) 
Wave extension: _oef
File:

OblateCoreShell.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for an oblate ellipsoid particle with a core/shell structure. 
The form factor is averaged over all possible orientations of the ellipsoid such that 
P(q) = scale*<f^2>/Vol + bkg, where f is the single particle scattering amplitude and 
the < > represent the orientational average. Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The function calculated is:

where

and

The returned value is in units of [cm-1]

Scattering contrast = SLD (core) - SLD (shell) or (shell -solvent) as marked
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w[0] (scale), and contrasts are both multiplicative factors in the model and are 
perfectly correlated. No more than one of these parameters can be free during model 
fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

It is the users' responsibility to ensure that shell radii are larger than core radii, and 
that major radii are larger than minor radii.

76-point Gaussian quadrature is used to perform the orientational averaging, so the 
calculation may be slow on older machines.

REFERENCE
Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.
Berr, S.  J. Phys. Chem., 1987, 91, 4760.

TEST DATASET
This example dataset is produced by running the Macro PlotOblateForm(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_oef values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Prolate Core-Shell Ell ipsoid

MACRO : FUNCTION
PlotProlateForm() : ProlateForm(w,y,x) 
Wave extension: _pef
File:

ProlateCoreShell.ipf
Requires: 

GaussUtils.ipf
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PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the form factor for a monodisperse prolate ellipsoid particle with a 
core/shell structure. The form factor is averaged over all possible orientations of the 
ellipsoid. The form factor is normalized by the total particle volume such that 
P(q) = scale*<f^2>/Vol + bkg, where f is the single particle scattering amplitude and 
the < > represent the orientational average. Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is P(q):

The returned value is in units of [cm-1]
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Scattering contrast = SLD (core) - SLD (shell) or SLD (shell -solvent) as marked

w[0] (scale), and contrasts are both multiplicative factors in the model and are 
perfectly correlated. No more than one of these parameters can be free during model 
fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

It is the users' responsibility to ensure that shell radii are larger than core radii, and 
that major radii are larger than minor radii.

76-point Gaussian quadrature is used to perform the orientational averaging, and may 
be slow on older machines.

REFERENCE
Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.
Berr, S.  J. Phys. Chem., 1987, 91, 4760.

TEST DATASET
This example dataset is produced by running the Macro PlotProlateForm(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_pef values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pa ra l l e l ep ipeds

MACRO : FUNCTION
Plot_Parallelepiped() : Parallelepiped(w,y,x) 
Wave extension: _Parallelepiped
File:

Parallelepiped.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 5 DEC 2000

APPROVED FOR DISTRIBUTION
Derek Ho 2 DEC 2003

DESCR IPT ION
Calculates the form factor for a rectangular solid with uniform scattering length density.  
The form factor is normalized by the particle volume such that P(q) = scale*<f^2>/Vol 
+ bkg, where < > is an average over all possible orientations of the rectangular solid. An 
instrument resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The function calculated is the form factor of the rectangular solid below:

The volume of the solid is V = ABC. For the calculation of the form factor to be valid, the 
sides of the solid MUST be chosen such that A < B < C. If this inequality in not satisfied, 
the model will not report an error, and the calculation will not be correct.

Note that the equations that follow are written in terms of reduced lengths, normalized to 
the middle length, B. By these definitions, a < 1, and c > 1

The form factor is then calculated as (a numerical double integral):
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Where the function S(x) is defined as:

and 

The radius of gyration of a rectangular solid is:

FITTING NOTES:

Scattering contrast (Δρ) = SLD (parallelepiped) - SLD (solvent)

w[0] (scale) and contrast are both multiplicative factors in the model and are perfectly 
correlated. One or both of these parameters must be held fixed during model fitting.

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

Constraints must be applied during fitting to ensure that the inequality A < B < C  is not 
violated. The calculation will not report an error, but the results will not be correct.

The returned value is in units of [cm-1], on absolute scale.

REFERENCE
see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
Equations (1), (13-14). (yes, it's in German)

TEST DATASET
This example dataset is produced by running the Macro Plot_Parallelepiped(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default 
coef_Parallelepiped values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Parallelepipeds - Core-shell

MACRO : FUNCTION
PlotCSParallelepiped() : CSParallelepiped(w,x) 
Wave extension : _CSPP

File:
CSParallelepiped.ipf

AUTHOR/MODIFICATION
Divya Singh JAN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JAN 2009

DESCR IPT ION
Calculates the form factor for a rectangular solid with a core-shell structure. The 
thickness and the scattering length density of the shell or "rim" can be different on all 
three (pairs) of faces.  The form factor is normalized by the particle volume such that 
P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all possible orientations of 
the rectangular solid. An instrument resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The function calculated is the form factor of the rectangular solid below. The core of the 
solid is defined by the dimensions ABC such that A < B < C.

There are rectangular "slabs" of thickness tA that add to the A dimension (on the BC 
faces). There are similar slabs on the AC (=tB) and AB (=tC) faces. The projection in 
the AB plane is then:
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The volume of the solid is:

meaning that there are "gaps" at the corners of the solid.

The intensity calculated follows the parallelepiped model, with the core-shell intensity 
being calculated as the square of the sum of the amplitudes of the core and shell, in the 
same manner as a core-shell sphere.

For the calculation of the form factor to be valid, the sides of the solid MUST be chosen 
such that A < B < C. If this inequality in not satisfied, the model will not report an error, 
and the calculation will not be correct.

FITTING NOTES:

If the scale factor w[0] is set equal to the particle volume fraction, φ, the returned value 
is the scattered intensity per unit volume, I(q) = φ*P(q). However, no interparticle 
interference effects are included in this calculation.

There are many parameters in this model. Hold as many fixed as possible with known 
values, or you will certainly end up at a solution that is unphysical.

Constraints must be applied during fitting to ensure that the inequality A < B < C  is not 
violated. The calculation will not report an error, but the results will not be correct.
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The returned value is in units of [cm-1], on absolute scale.

REFERENCE
see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
Equations (1), (13-14). (yes, it's in German)

TEST DATASET
This example dataset is produced by running the Macro Plot_CSParallelepiped(), using 
100 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_CSPP 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Dilute Lamellar Form Factor

MACRO : FUNCTION
Plot_LamellarFF() : LamellarFF(w,y,x)
Wave extension : _LamellarFF 
File:

LamellarFF.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf
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AUTHOR/MODIFICATION
Steve Kline 16 JUL 2003

APPROVED FOR DISTRIBUTION
Lionel Porcar 6 NOV 2003

DESCR IPT ION
Calculates the form factor from a lyotropic lamellar phase. The intensity calculated is 
for lamellae of uniform scattering length density that are randomly distributed in 
solution (a powder average). The thickness of the lamellae is polydisperse. No inter-
lamellar structure factor is calculated. Other models are available where S(q) is 
calculated. A resolution smeared form factor is  provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scale*I(q) + background, and is in units of [cm-1]

where the form factor is given by:

The parameters are:

δ = bilayer thickness
σ = variation in bilayer thickness = δ*polydispersity

The meaning of the multiplicative scale factor is not well-defined, but should be on the 
order of the volume fraction of solution occupied by the lamellar crystallites. Please see 
the original references for clarification.

REFERENCE
Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.

also in J. Phys. Chem. B, 105, (2001) 11081-11088.
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TEST DATASET
This example dataset is produced by running the Macro Plot_LamellarFF(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_Lamellar 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Dilute Lamellar (head+tail) Form Factor

MACRO : FUNCTION
Plot_LamellarFF_HG() : LamellarFF_HG(w,y,x) 
Wave extension : _LamellarFF_HG
File:

LamellarFF_HG.ipf
Requires:  

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 16 JUL 2003

APPROVED FOR DISTRIBUTION
Lionel Porcar 6 NOV 2003

DESCR IPT ION
Calculates the form factor from a lyotropic lamellar phase. The intensity calculated is 
for lamellae of two-layer scattering length density that are randomly distributed in 
solution (a powder average). The scattering length density of the tail region, headgroup 
region, and solvent are taken to be different. No inter-lamellar structure factor is 
calculated. Other models are available where S(q) is calculated. A resolution smeared 
form factor is provided.

VARIABLES
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Input Variables (default values):

USAGE NOTES
The returned value is scale*I(q) + background, and is in units of [cm-1]

where the form factor is given by:

The parameters are:

δΗ = headgroup thickness
δΤ = tail length
ΔρΗ = SLD (headgroup) - SLD(solvent)
ΔρΤ = SLD (tail) - SLD(solvent)

NOTE: The total bilayer thickness = 2(δΗ + δΤ)

The meaning of the multiplicative scale factor is not well-defined, but should be on the 
order of the volume fraction of solution occupied by the lamellar crystallites. Please see 
the original references for clarification.

REFERENCE
Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.

also in J. Phys. Chem. B, 105, (2001) 11081-11088.

TEST DATASET
This example dataset is produced by running the Macro Plot_LamellarFF_HG(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_Lamellar 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Concentrated Lamellar Form Factor

MACRO : FUNCTION
Plot_LamellarPS() : LamellarPS(w,y,x) 
Wave extension: _LamellarPS
File:

LamellarPS.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 15 JUL 2003

APPROVED FOR DISTRIBUTION
Lionel Porcar 6 NOV 2003

DESCR IPT ION
Calculates the scattered intensity from a lyotropic lamellar phase. The intensity (form 
factor and structure factor) calculated is for lamellae of uniform scattering length 
density that are randomly distributed in solution (a powder average). The lamellae 
thickness is polydisperse. The model can also be applied to large, multi-lamellar 
vesicles (MLV's). A resolution smeared version is provided.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scale*I(q) + background, and is in units of [cm-1]

where the form factor is given by:

and the structure factor for the lamellar stacks is (all terms are part of the 
summation):

with the Caille parameter:

and Euler's constant: 
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The parameters are:

d = repeat spacing
δ = bilayer thickness
Δq = instrumental resolution (==0 if the unsmeared version is plotted)
σ = variation in bilayer thickness
K = smectic bending elasticity
B = compression modulus
N = number of lamellar plates (only the integer portion is used)

MODEL NOTES:

The meaning of the multiplicative scale factor is not well-defined, but should be on the 
order of the volume fraction of solution occupied by the lamellar crystallites. Please see 
the original references for clarification.

The model is only valid for lamellar phases with strong interactions between the 
membranes.

When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of 
the model are not correct. The calculation will not fail, but the validity of the model 
calculation is suspect.

The strong scattering predicted at low Q values is a consequence of the powder average of 
the model (1/Q^2) and will tend to overestimate the scattering from a real sample. It is 
more important that the Bragg peak and any higher order peaks are well fitted.

If it is possible, use the scattering from a dilute lamellar phase and fit with a form 
factor only model to determine the thickness and polydispersity. Then use those values as 
fixed inputs to this calculation.

NOTES FOR CURVE FITTING:

 1) The epsilon wave "epsilon_LamellarPS" must be used to force a  larger 
derivative step for the # of repeat units, which is an integer. A singular matrix error 
will always result if you don't follow this. This wave is created and filled with the 
appropriate values when the "Plot_LamellarPS" macro is run.
 2) The # of repeats should be constrained to approximately 3<N<200, otherwise the 
optimization can pick a VERY large N, and appear to "hang" for long periods of time in the 
calculation. Do this by specifying a constraint wave (a "New Wave") in the same tab of 
the Curve Fitting Dialog as where the epsilon wave is specified
3) Only the integer portion of the number of repeats is used. Although a floating point 
value is reported in the coefficient list, the value is truncated to an integer for the 
calculation.

REFERENCE
Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.

also in J. Phys. Chem. B, 105, (2001) 11081-11088.

TEST DATASET
This example dataset is produced by running the Macro Plot_LamellarPS(), using 128 
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data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_LamellarPS 
values. No resolution smearing was used.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Concentrated Lamellar (head+tail) Form Factor

MACRO : FUNCTION
Plot_LamellarPS_HG() : LamellarPS_HG(w,y,x) 
Wave extension: _LamellarPS_HG
File:

LamellarPS_HG.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 15 JUL 2003

APPROVED FOR DISTRIBUTION
Lionel Porcar 6 NOV 2003

DESCR IPT ION
Calculates the scattered intensity from a lyotropic lamellar phase. The intensity 
calculated is for lamellae of two-layer scattering length density that are randomly 
distributed in solution (a powder average). The scattering length density of the tail 
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region, headgroup region, and solvent are taken to be different. The model can also be 
applied to large, multi-lamellar vesicles (MLV's). A resolution smeared version is 
provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scale*I(q) + background, and is in units of [cm-1]

where the form factor is given by:

and the structure factor for the lamellar stacks is (all terms are part of the 
summation):

with the Caille parameter:
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and Euler's constant: 

The parameters are:

d = repeat spacing
δΗ = headgroup thickness
δΤ = tail length
ΔρΗ = SLD (headgroup) - SLD(solvent)
ΔρΤ = SLD (tail) - SLD(solvent)
Δq = instrumental resolution (==0 if unsmeared version is plotted)
K = smectic bending elasticity
B = compression modulus
N = number of lamellar plates (only the integer portion is used)

MODEL NOTES:

The total bilayer thickness = 2(δΗ + δΤ)

The meaning of the multiplicative scale factor is not well-defined, but should be on the 
order of the volume fraction of solution occupied by the lamellar crystallites. Please see 
the original references for clarification.

The model is only valid for lamellar phases with strong interactions between the 
membranes.

When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of 
the model are not correct. The calculation will not fail, but the validity of the model 
calculation is suspect.

The strong scattering predicted at low Q values is a consequence of the powder average of 
the model (1/Q^2) and will tend to overestimate the scattering from a real sample. It is 
more important that the Bragg peak and any higher order peaks are well fitted.

If it is possible, use the scattering from a dilute lamellar phase and fit with a form 
factor only model to determine the thickness and polydispersity. Then use those values as 
fixed inputs to this calculation.
The meaning of the multiplicative scale factor is not well-defined, but should be on the 
order of the volume fraction of solution occupied by the lamellar crystallites. Please see 
the original references for clarification.

NOTES FOR CURVE FITTING:

  1) The epsilon wave "epsilon_LamellarPS" must be used to force a  larger 
derivative step for the # of repeat units, which is an integer. A singular matrix error 
will always result if you don't follow this. This wave is created and filled with the 
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appropriate values when the "Plot_LamellarPS" macro is run.
 2) The # of repeats should be constrained to approximately 3<N<200, otherwise the 
optimization can pick a VERY large N, and appear to "hang" for long periods of time in the 
calculation. Do this by specifying a constraint wave (a "New Wave") in the same tab of 
the Curve Fitting Dialog as where the epsilon wave is specified
3) Only the integer portion of the number of repeats is used. Although a floating point 
value is reported in the coefficient list, the value is truncated to an integer for the 
calculation.

REFERENCE
Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.

also in J. Phys. Chem. B, 105, (2001) 11081-11088.

TEST DATASET
This example dataset is produced by running the Macro Plot_LamellarPS_HG(), using 
256 data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default 
coef_LamellarPS_HG values.  No resolution smearing was used.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Stacked Disks (Tactoids)

MACRO : FUNCTION
PlotStackedDiscs() : StackedDiscs(w,y,x) 
Wave extension: _scyl
File:

StackedDiscs.ipf
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Requires: 
GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Derek L. Ho 04 JUL 2001

APPROVED FOR DISTRIBUTION
Steven Kline 10 JUL 2001

DESCR IPT ION
Calculates the total coherent scattered intensity from stacked discs (tactoids) with a 
core/layer structure.  Assuming the next neighbor distance (d-spacing) in a stack of 
parallel discs obeys a Gaussian distribution, a structure factor S(q) proposed by Kratky 
and Porod in 1949 is used in this function. Note that the resolution smearing calculation 
uses 76 Gauss quadrature points to properly smear the model since the function is 
HIGHLY oscillatory, especially around the q-values that correspond to the repeat 
distance of the layers. This can make the calculations rather slow.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is:

where N is the number of discs per unit volume,  represents the 
corresponding contrast of species i with respect to the solvent, and φ is the angle 
between q and the axis of the disc,
Vt and Vc are the total volume and the core volume of a single disc, respectively.
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where d, 2h and R are the thickness of the layer, the core thickness and the radius of the 
disc, respectively.

 

where n corresponds to the total number of discs stacked, and D and σD represent the 
next neighbor center-to-center distance (d-spacing) and its Gaussian standard deviation 
(GSD), respectively.
The returned value is scaled to units of [cm-1].

         

Scattering from fully exfoliated monodisperse discs (the single disc form factor P(q)) 
can be calculated by setting the total number of discs stacked per tactoid equal to 1.
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REFERENCE

Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, 1955.
Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949. 
Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering", Clarendon, Oxford, 
1994.

TEST DATASET

This example dataset is produced by running the Macro PlotStackedDiscs(), using 500 
data points, qmin = 0.001 Å-1,  qmax = 1.0 Å-1 and the above default coef_scyl values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Lamellar Paracrystal

MACRO : FUNCTION
PlotLamellar_ParaCrystal() : Lamellar_ParaCrystal(w,x)

Wave extension : _LamParaCryst
File:

LamellarParacrystal.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008
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APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a stack of repeating lamellar structures. The stacks of 
lamellae (infinite in lateral dimension) are treated as a paracrystal to account for the 
repeating spacing. The repeat distance is further characterized by a Gaussian 
polydispersity. This model can be used for large multilamellar vesicles.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

The form factor of the bilayer is approximated as the cross section of an infinite, planar 
bilayer of thickness t.

Here, the scale factor is used instead of the mass per area of the bilayer (Γ). The scale 
factor is the volume fraction of the material in the bilayer, not the total excluded volume 
of the paracrystal. ZN(q) describes the interference effects for aggregates consisting of 
more than one bilayer. The equations used are (3-5) from the Bergstrom reference 
below.

125



Non-integer numbers of stacks are calculated as a linear combination of the lower and 
higher values:

REFERENCE

M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J. Phys. Chem. B, 103 
(1999) 9888-9897.

TEST DATASET
This example dataset is produced by running the Macro PlotLamellar_ParaCrystal(), 
using 200 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default 
coef_LamParaCryst values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

BCC (Body-Centered Cubic) Paracrystal

MACRO : FUNCTION
PlotBCC_ParaCrystal() : BCC_ParaCrystal(w,x)
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Wave extension : _BCC_ParaCryst
File:

BCC_ParaCrystal.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a body-centered cubic lattice with paracrystalline 
distortion. The primary particles are considered to be monodisperse spheres. Thermal 
vibrations are considered to be negligible, and the size of the paracrystal is infinitely 
large. Paracrystalline distortion is assumed to be isotropic and characterized by a 
Gaussian distribution.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, 
V(lattice) is a volume correction for the crystal structure, P(q) is the form factor of 
the sphere (normalized) and Z(q) is the paracrystalline structure factor for a body-
centered cubic structure. Equation (1) of the 1990 reference is used to calculate Z(q), 
using equations (29)-(31) from the 1987 paper for Z1, Z2, and Z3.

The lattice correction (the occupied volume of the lattice) for a body-centered cubic 
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structure of particles of radius R and nearest neighbor separation D is:

The distortion factor (one standard deviation) of the paracrystal is included in the 
calculation of Z(q):

where g is a fractional distortion based on the nearest neighbor distance.

The body-centered cubic lattice is:

For a crystal, diffraction peaks appear at reduced q-values givn by:
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where for a body-centered cubic lattice, only reflections where (h+k+l) = even are 
allowed and reflections where (h+k+l) = odd are forbidden. Thus the peak positions 
correspond to (just the first 5):

NOTE: The calculation of Z(q) is a double numerical integral that must be carried out 
with a high density of points to properly capture the sharp peaks of the paracrystalline 
scattering. So be warned that the calculation is SLOW. Go get some coffee. Fitting of any 
experimental data must be resolution smeared for any meaningful fit. This makes a 
triple integral. Very, very slow. Go get lunch.

REFERENCES

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper)
Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to 
FCC and BCC lattice structure calculation)

TEST DATASET
This example dataset is produced by running the Macro PlotBCC_ParaCrystal(), using 
200 data points, qmin = 0.01 Å-1,  qmax = 0.1 Å-1 and the above default 
coef_BCC_ParaCryst values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

FCC (Face-Centered Cubic) Paracrystal

MACRO : FUNCTION
PlotFCC_ParaCrystal() : FCC_ParaCrystal(w,x)

Wave extension : _FCC_ParaCryst
File:

FCC_ParaCrystal.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a face-centered cubic lattice with paracrystalline 
distortion. The primary particles are considered to be monodisperse spheres. Thermal 
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vibrations are considered to be negligible, and the size of the paracrystal is infinitely 
large. Paracrystalline distortion is assumed to be isotropic and characterized by a 
Gaussian distribution.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, 
V(lattice) is a volume correction for the crystal structure, P(q) is the form factor of 
the sphere (normalized) and Z(q) is the paracrystalline structure factor for a face-
centered cubic structure. Equation (1) of the 1990 reference is used to calculate Z(q), 
using equations (23)-(25) from the 1987 paper for Z1, Z2, and Z3.

The lattice correction (the occupied volume of the lattice) for a face-centered cubic 
structure of particles of radius R and nearest neighbor separation D is:

The distortion factor (one standard deviation) of the paracrystal is included in the 
calculation of Z(q):

where g is a fractional distortion based on the nearest neighbor distance.
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The face-centered cubic lattice is:

For a crystal, diffraction peaks appear at reduced q-values givn by:

where for a face-centered cubic lattice  h, k, l all odd or all even are allowed and 
reflections where h, k, l are mixed odd/even are forbidden. Thus the peak positions 
correspond to (just the first 5):

NOTE: The calculation of Z(q) is a double numerical integral that must be carried out 
with a high density of points to properly capture the sharp peaks of the paracrystalline 
scattering. So be warned that the calculation is SLOW. Go get some coffee. Fitting of any 
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experimental data must be resolution smeared for any meaningful fit. This makes a 
triple integral. Very, very slow. Go get lunch.

REFERENCES

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper)
Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to 
FCC and BCC lattice structure calculation)

TEST DATASET
This example dataset is produced by running the Macro PlotFCC_ParaCrystal(), using 
200 data points, qmin = 0.01 Å-1,  qmax = 0.1 Å-1 and the above default 
coef_FCC_ParaCryst values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SC (Simple Cubic) Paracrystal

MACRO : FUNCTION
PlotSC_ParaCrystal() : SC_ParaCrystal(w,x)
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Wave extension : _SC_ParaCryst
File:

SC_ParaCrystal.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a simple cubic lattice with paracrystalline distortion. The 
primary particles are considered to be monodisperse spheres. Thermal vibrations are 
considered to be negligible, and the size of the paracrystal is infinitely large. 
Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian 
distribution.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, 
V(lattice) is a volume correction for the crystal structure, P(q) is the form factor of 
the sphere (normalized) and Z(q) is the paracrystalline structure factor for a simple 
cubic structure. Equation (16) of the 1987 reference is used to calculate Z(q), using 
equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3.
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The lattice correction (the occupied volume of the lattice) for a simple cubic structure 
of particles of radius R and nearest neighbor separation D is:

The distortion factor (one standard deviation) of the paracrystal is included in the 
calculation of Z(q):

where g is a fractional distortion based on the nearest neighbor distance.

The simple cubic lattice is:

For a crystal, diffraction peaks appear at reduced q-values givn by:
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where for a simple cubic lattice any h, k, l are allowed and none are forbidden. Thus the 
peak positions correspond to (just the first 5):

NOTE: The calculation of Z(q) is a double numerical integral that must be carried out 
with a high density of points to properly capture the sharp peaks of the paracrystalline 
scattering. So be warned that the calculation is SLOW. Go get some coffee. Fitting of any 
experimental data must be resolution smeared for any meaningful fit. This makes a 
triple integral. Very, very slow. Go get lunch.

REFERENCES

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper)
Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to 
FCC and BCC lattice structure calculation)

TEST DATASET
This example dataset is produced by running the Macro PlotSC_ParaCrystal(), using 
200 data points, qmin = 0.01 Å-1,  qmax = 0.1 Å-1 and the above default 
coef_SC_ParaCryst values.

136



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Structure Factors for Interacting Particles

Hard Sphere Structure Factor

MACRO : FUNCTION
PlotHardSphereStruct() : HardSphereStruct(w,y,x) 
Wave extension: _hss
File:

HardSphereStruct.ipf
Requires: 

none

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 199

DESCR IPT ION
Calculates the interparticle structure factor for monodisperse spherical particles 
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interacting through hard sphere (excluded volume) interactions. The solution uses the 
Percus-Yevick closure.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is dimensionless

The interparticle potential is: 

where r is the radial distance from the center of the sphere of radius R.

No intraparticle (form factor) scattering is included.

REFERENCE
Percus, J. K.; Yevick, G. J. Phys. Rev. 1958, 110, 1.

TEST DATASET
This example dataset is produced by running the Macro PlotHardSphereStruct(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.3  Å-1 and the above default coef_hss 
values.

138



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Square Well Structure Factor

MACRO : FUNCTION
PlotSquareWellStruct() : SquareWellStruct(w,y,x) 
Wave extension: _sws
File:

SquareWellStruct.ipf
Requires: 

none

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
Calculates the interparticle structure factor for a square well fluid of spherical 
particles.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is dimensionless.

The mean spherical approximation (MSA) closure was used for this calculation, and is 
not the most appropriate closure for an attractive interparticle potential. This solution 
has been compared to Monte Carlo simulations for a square well fluid, showing this 
calculation to be limited in applicability to well depths ε < 1.5 kT and volume fractions φ 
< 0.08.

Positive well depths correspond to an attractive potential well. Negative well depths 
correspond to a potential "shoulder", which may or may not be physically reasonable.

The well width (λ) is defined as multiples of the particle diameter (2*R)

The interaction potential is:

REFERENCE
Sharma, R. V.; Sharma, K. C. Physica, 1977, 89A, 213.

TEST DATASET
This example dataset is produced by running the Macro PlotSquareWellStruct(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.3 Å-1 and the above default coef_sws 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Screened Coulomb Structure Factor

MACRO : FUNCTION
PlotHayterPenfoldMSA() : HayterPenfoldMSA(w,y,x) 
Wave extension: _hpmsa
File:

HPMSA.ipf
Requires: 

PlotUtils.ipf

AUTHOR/MODIFICATION
Paul Butler 14 NOV 1999

APPROVED FOR DISTRIBUTION
S. Kline 17 NOV 1999

DESCR IPT ION
Calculates the Structure factor (the Fourier transform of the pair correlation function 
g(r)) for a system of charged, spheroidal objects in a dielectric medium.  When 
combined with an appropriate form factor (such as sphere, core+shell, ellipsoid etc..), 
this allows for inclusion of the interparticle interference effects due to screened 
coulomb repulsion between charged particles.
 

VARIABLES
Input Variables (default values):

USAGE NOTES
This routine only works for charged particles.  If w[1] (the charge) is set to zero the 
routine will self destruct.  For non-charged particles use a hard sphere potential.

w[4], the salt concentration, is used to compute the ionic strength of the solution which 
in turn is used to compute the Debye screening length.  At present there is no provision 
for entering the ionic strength directly nor for use of any multivalent salts.  The 
counterions are also assumed to be monovalent.

REFERENCE
1.  JP Hansen and JB Hayter "A rescaled MSA structure factor for dilute charged 
colloidal dispersions" Molecular Physics 46, 651-656 (1982).

2.  JB Hayter and J Penfold "An analytic structure factor for macroion solutions" 
Molecular Physics 42, 109-118 (1981).
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TEST DATASET
This example dataset is produced by running the Macro PlotHayterPenfoldMSA(), using 
128 data points, qmin = 0.001 Å^-1,  qmax = 0.3 (Å^-1) and the above default 
coef_hpmsa values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sticky Hard Sphere Structure Factor

MACRO : FUNCTION
Plot_StickyHS_Struct() : StickyHS_Struct(w,y,x)
Wave extension : _shsSQ 
File:

StickyHardSphereStruct.ipf
Requires: 

none

AUTHOR/MODIFICATION
Steve Kline 14 JUL 2004

APPROVED FOR DISTRIBUTION
WeiRen Chen 01 FEB 2006

DESCR IPT ION
Calculates the interparticle structure factor for a hard sphere fluid with a narrow 
attractive well. A perturbative solution of the Percus-Yevick closure is used. The 
strength of the attractive well is described in terms of "stickiness" as defined below.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is a dimensionless structure factor, S(q).

The perturbation parameter, epsilon, should be held between 0.01 and 0.1. It is best to 
hold the perturbation parameter fixed and let the "stickiness" vary to adjust the 
interaction strength. The stickiness, tau, is defined in equation 21 and is a function of 
both the perturbation parameter and the interaction strength. Tau and epsilon are 
defined in terms of the hard sphere diameter (σ = 2R), the width of the square well, Δ 
(same units as R), and the depth of the well, uo, in units of kT. From the definition, it is 
clear that smaller tau mean stronger attraction.

The interaction potential is:

The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure 
for an attractive interparticle potential. This solution has been compared to Monte Carlo 
simulations for a square well fluid, with good agreement.

The true particle volume fraction, φ, is not equal to η, which appears in most of the 
reference. The two are related in equation (24) of the reference. The reference also 
describes the relationship between this perturbation solution and the original sticky 
hard sphere (or adhesive sphere) model by Baxter.

NOTES: The calculation can go haywire for certain combinations of the input parameters, 
producing unphysical solutions - in this case errors are reported to the command 
window and the S(q) is set to -1 (it will disappear on a log-log plot). Use tight bounds to 
keep the parameters to values that you know are physical (test them) and keep nudging 
them until the optimization does not hit the constraints.

REFERENCE
Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys., 1991, 95(12), 9186-
9190. Note that in this reference equation (23) should read:
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TEST DATASET
This example dataset is produced by running the Macro Plot_StickyHS_Struct(), using 
256 data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_shsSQ 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Two-Yukawa Structure Factor

MACRO : FUNCTION
PlotTwoYukawa() : TwoYukawa(w,x) 
Wave extension : _2yuk
File:

Two_Yukawa.ipf
Requires: 

none

Additional Macros:
Plot_2YukawaPotential()

AUTHOR/MODIFICATION
Steve Kline 12 JUL 2010

APPROVED FOR DISTRIBUTION
Yun Liu 12 JUL 2010
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DESCR IPT ION
Calculates the structure factor, S(q), for a monodisperse spherical particle interacting 
through a two-Yukawa potential. The Mean Spherical Approximation is used as the 
closure to solve the Ornstein-Zernicke equations.

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculated is S(q), based on the solution of the Ornstein-Zernicke equations 
using the Two-Yukawa potential (in its scaled form, r=r/diam):

and the MSA closure:

Radius is that of the hard core. The returned value is dimensionless.

The solution for S(q) is a numerical solution, involving the solution to a high order 
(23rd order) polynomial and divining the correct roots. As such, the input parameters 
have stringent ranges over where physical solutions can be found. Please refer to the 
Figures of the reference below which shows some of the extreme cases for the potential 
parameters. For an unphyisical solution, the S(q) returned is = 1000 and is clearly 
unphysical, but this may be somewhat unpredictable. it is STRONGLY suggested that you 
flesh out the limits of the stable solutions for your particular conditions, and try to 
constrain any model fitting to reasonable values.

An additional macro is provided to plot the scaled two-Yukawa potential for the current 
coefficients. The macro must be re-run to see an updated plot of the potential if the 
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parameters are changed. This macro has no effect on the calculation of the structure 
factor.

Another macro is provided to calculate g(r) for the current potential conditions. The 
macro must be re-run to see an updated plot of g(r) if the parameters are changed.
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An undocumented OneYukawa structure factor is also supplied, calculated using the same 
formalism as the Two-Yukawa potential. Use at your own risk.

The Igor version of this function is based in part on Matlab code supplied by Yun Liu. The 
XOP version of this function is based in part on c-code supplied by Marcus Henning.

REFERENCE
Y Liu, WR Chen, SH Chen,  "Cluster formation in two-Yukawa fluids.", The Journal of 
Chemical Physics (2005) vol. 122 pp. 044507.

TEST DATASET
This example dataset is produced by running the Macro PlotTwoYukawa(), using 200 
data points, qmin = 0.001 Å^-1,  qmax = 0.5 (Å^-1) and the above default coef_2yuk 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Interacting Particles

Polydisperse Hard Spheres

MACRO : FUNCTION
PlotPolyHardSpheres() : PolyHSIntensity(w,y,x) 
Wave extension : _phs
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File:
PolyHardSphereInten.ipf

Requires: 
GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
This function calculates the scattered intensity for a population of polydisperse spheres, 
including hard sphere interactions between the particles. The calculation is an exact, 
multicomponent solution, using the Percus-Yevick closure. A Schulz distribution is used 
to describe the polydispersity of the diameter. Partial structure factors are calculated 
for the size distribution. No mondisperse structure factor approximations are used in 
this solution

VARIABLES
Input Variables (default values):

USAGE NOTES

The function calculates the scattered intensity from a polydisperse population of spheres 
of uniform scattering length density. The results are applicable to any PHS fluid which 
can be represented by a Schulz distribution. The partial structure factors of the 
different sized particles is accounted for rigorously in the Percus-Yevick closure 
approximation, one which hs been shown through simulation to be very good for even 
dence hard sphere fluids. This analytic expression for the scattered intensity avoids the 
approximations caused by factoring the expressions for polydisperse systems to allow 
(sometimes VERY) approximate monodisperse structure factors to be used to 
(approximately) describe a polydisperse HS fluid. If PHS applies to your system, use 
this funcitonal form over any approximation.

What is calculated is:
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where

 are the partial structure functions, related to the partial structure factors,Sij(q). The 
full equations can be found in the reference.

The returned value is the scattered intensity in absolute scale, units of [cm-1].

Polydispersity, p = σ/R, where σ^2 is the variance of the distribution and R is the mean 
particle radius, coef_phs[0]. For a more complete description of the Schulz 
distribution, see: J. Hayter in "Physics of Amphiphiles - Micelles, Vesicles and 
Microemulsions" V. DeGiorgio and M. Corti, Eds. (1983) p. 69.

Polydispersity, w[1], often needs to be constrained during fitting to remain between its 
physical limits of 0 < p < 1.

Scattering contrast = SLD (sphere) - SLD (solvent).

Volume fraction and scattering contrast are correlated, and one or both should be held 
fixed during model fitting.

REFERENCE
Griffith, W. L.; Triolo, R.; Compere, A. L. Phys. Rev. A, 1987, 35, 2200.

TEST DATASET
This example dataset is produced by running the Macro PlotPolyHardSpheres(), using 
256 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_phs 
values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Binary Hard Spheres

MACRO : FUNCTION
Plot_BinaryHS() : BinaryHS(w,y,x) 
Plot_BinaryHS_PSF()
Calculate_BHS_Parameters()
Duplicate_AL_Parameters()

Wave extension : _BinaryHS
File:

BinaryHardSpheres.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 14 JUL 2004

APPROVED FOR DISTRIBUTION
WeiRen Chen 01 FEB 2006

DESCR IPT ION
This function calculates the scattered intensity for a binary mixture of spheres, 
including hard sphere interactions between the particles. Both of the populations are 
monodisperse. The calculation is an exact, multicomponent solution, using the Percus-
Yevick closure. The three partial structure factors can also be calculated through a 
separate macro. A resolution smeared version of the scattered intensity is provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function that is calculated is the total scattered intensity from the binary mixture in 
absolute scale, units of [cm-1]. The calculation is exact in the Percus-Yevick closure.
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where the Sij(q) are the partial structure factors, the fi(q) are the scattering 
amplitudes of the spherical particles. The subscript (1) is the smaller sphere, and (2) 
is the larger sphere. x is the number fraction of larger spheres, and is defined as:

with n being the number density of each population of spheres. The number fraction, x, 
is automatically calculated based on the diameter ratio and the volume fractions as:

where the total volume fraction and size ratio are defined as in the original reference:

The number fraction can be calculated by the supplied macro as described below. 

Notes:
The volume fractions and the scattering contrasts are loosely correlated (in a 

complex way), so holding as many parameters fixed to known values  during fitting will 
improve the robustness of the fit.

Since the calculation uses the Percus-Yevick closure, all of the limitations of 
that closure relation apply here. Specifically, one should be wary of results for (total) 
volume fractions greater than approximately 40%. Depending on size ratios or number 
fractions, the limit on total volume fraction may be lower.

Macros:

Plot_BinaryHS_PSF()
Plots the three partial structure factors versus Q*R2*2 (the wave 

QD2_BinaryHS). The partial structure factors can also be plotted against q (the wave 
xwave_BinaryHS) just like the total intensity.

Calculate_BHS_Parameters()
This macro will take the radii and volume fractions in the coef_BinaryHS wave 

and calculate the number fractions of each component.

Duplicate_AL_Parameters()
This macro takes as input eta, x, and alpha as defined in Ashcroft and Lagreth's 

(AL) paper. It also takes an actual radius of the larger sphere (in Angstroms). These 
values are converted into radii and volume fractions, and automatically copied to the 
coef_BinaryHS wave. Intensity or PSF graphs that are open will automatically update. 
This is particularly useful for duplicating the figures in the AL paper.

REFERENCE
N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692.
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[Errata found in Phys. Rev. 166 (1968) 934.]

TEST DATASET
This example dataset is produced by running the Macro Plot_BinaryHS(), using 256 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_BinaryHS 
values.

The three partial structure factors that are combined to generate the total scattering can 
be generated by using the macro Plot_BinaryHS_PSF(). These partial structure factors 
are dependent on the coef_BinaryHS and will change as those coefficients are changed. 
They are automatically plotted against the wave QD2_BinaryHS which is Q*Rlarge*2, 
giving a dimensionless x-axis. This is for direct comparison to the figures given in the 
original reference. The partial structure factors can also be plotted versus the 
xwave_BinaryHS. The macro defaults to plot the scaled x-axis over a range of (0,30) 
for clarity.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Polymer Models

Debye Model

MACRO : FUNCTION
PlotDebye() : Debye(w,y,x) 
Wave extension: _deb
File:

Debye.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Charlie Glinka 06 SEP 2003

DESCR IPT ION
Calculates the Debye function, D(x),

    .
D(x) represents the form factor for a linear polymer chain in the melt or in dilute 

153



solution (theta solvent).  In addition to the radius of gyration,  Rg, a scale factor "scale", 
and a constant background term are included in the calculation.  The macroscopic 
scattering cross section for this model is, therefore,

For a dilute solution of polymer chains in a theta solvent, 

and

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1]

Scattering contrast = SLD (polymer) - SLD (solvent)

REFERENCE
Roe, R.-J., "Methods of X-Ray and Neutron Scattering in Polymer Science", Oxford 
University Press, New York, (2000).

TEST DATASET
This example dataset is produced by running the Macro PlotDebye(), using 128 data 
points, qmin = 0.001 Å-1,  qmax = 0.3 (Å-1) and the above default coef_deb values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polydisperse Gaussian Coil

MACRO : FUNCTION
PlotPolyGaussCoil() : PolyGaussCoil(w,x)

Wave extension : _pgc
File:

PolyGaussCoil.ipf
Requires: 

AUTHOR/MODIFICATION
Boualem Hammouda JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculate an empirical functional form for scattering from a polydisperse polymer chain 
ina good solvent. The polymer is polydisperse with a Schulz-Zimm polydispersity of the 
molecular weight distribution.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as:

where the dimensionless chain dimension is:

and the polydispersity is:

REFERENCE
 Glatter & Kratky - pg.404

J.S. Higgins, and H.C. Benoit, “Polymers and Neutron Scattering”, Oxford Science
Publications (1996).

TEST DATASET
This example dataset is produced by running the Macro PlotPolyGaussCoil(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_pgc values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polymer-Excluded Volume

MACRO : FUNCTION
PlotPolymerExclVol() : PolymerExclVol(w,x)

Wave extension : _PolExVol
File:

PolymerExcludVol.ipf
Requires: 

none

AUTHOR/MODIFICATION
Boualem Hammouda 25 JAN 2010

APPROVED FOR DISTRIBUTION
Steve Kline 25 JAN 2010

DESCR IPT ION
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Calculates the scattering from polymers with excluded volume effects.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is P(Q) as written in equation (2), plus the incoherent background 
term. The result is in the units of [cm-1s r-1], absolute scale.

A model describing polymer chain conformations with excluded volume was introduced to 
describe the conformation of polymer chains, and has been used as a template for 
describing mass fractals. The form factor for that model (Benoit, 1957) was originally 
presented in the following integral form:

 ( 1 )

Here n is the excluded volume parameter which is related to the Porod exponent m as ν = 
1/m, a is the polymer chain statistical segment length and n is the degree of 
polymerization. This integral was later put into an “almost” analytical form 
(Hammouda, 1993) as follows:

 ( 2 )

Here, γ(x,U) is the incomplete gamma function which is a built-in function in computer 
libraries. 

 ( 3 )

The variable U is given in terms of the scattering variable Q as:

 ( 4 )

The radius of gyration squared has been defined as: 
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 ( 5 )

Note that this model describing polymer chains with excluded volume applies only in the 
mass fractal range ( 5/3 <= m <= 3) and does not apply to surface fractals ( 3 < m <= 
4). It does not reproduce the rigid rod limit (m = 1) because it assumes chain 
flexibility from the outset.  It may cover a portion of the semiflexible chain range ( 1 < 
m < 5/3). 

The low-Q expansion yields the Guinier form and the high-Q expansion yields the Porod 
form which is given by: 

 ( 6 )

Here Γ(x) = γ(x,inf) is the gamma function. The asymptotic limit is dominated by the 
first term: 

 

 ( 7 )

The special case when ν = 0.5 (or m = 1/ν = 2) corresponds to Gaussian chains for 
which the form factor is given by the familiar Debye function.

 ( 8 )

The form factor given by Eq. 2 is the calculated result, and is plotted below for the 
default parameter values. 

REFERENCE
Benoit, H., Comptes Rendus Hebd Seances Acad Sci(1957). 245, 2244-2247.

Hammouda, B., “SANS from Homogeneous Polymer Mixtures – A Unified Overview”, 
Advances in Polym. Sci. (1993), 106, 87-133. 

TEST DATASET
This example dataset is produced by running the Macro PlotPolymerExclVol(), using 
128 data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_PolExVol 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RPA - 10 cases

MACRO : FUNCTION
PlotRPAForm() : RPAForm(w,y,x) 
Wave extension: _rpa
File:

SmearedRPA.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
B. Hammouda 21 JAN 1999

APPROVED FOR DISTRIBUTION
S. Kline 22 JAN 1999

DESCR IPT ION
Calculates the macroscopic scattering intensity (units of cm^-1) for a multicomponent 
homogeneous mixture of polymers using the Random Phase Approximation. This general 
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formalism contains 10 specific cases:
Case 1: C/D Binary mixture of homopolymers
Case 2: C-D Diblock copolymer
Case 3: B/C/D Ternary mixture of homopolymers
Case 4: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D
Case 5: B-C-D Triblock copolymer
Case 6: A/B/C/D Quaternary mixture of homopolymers
Case 7: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D
Case 8: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D
Case 9: A-B/C-D Mixture of two diblock copolymers A-B and C-D
Case 10: A-B-C-D Four-block copolymer
Resolution smeared version is also provided.

VARIABLES
Fitting Parameters (default values):

Fixed Input Parameters (default values):

USAGE NOTES

Only one case can be used at any one time.  Plotting a different case will overwrite the 
original parameter waves.

The returned value is scaled to units of [cm-1]. 

Component D is assumed to be the "background" component (all contrasts are calculated 
with respect to component D). 

Scattering contrast for a C/D blend= {SLD (component C) - SLD (component D)}2

Depending on what case is used, the number of fitting parameters (w[0], w[1], w[2] , 
etc) varies. These represent the segment lengths (ba, bb, etc) and the Chi parameters 
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(Kab, Kac, etc). The last one of these is a scaling factor to be held constant equal to unity. 
The input parameters are the degree of polymerization (var[0], var[4], etc), the 
volume fractions for each component (var[1], var[5], etc) the specific volumes 
(var[2], var[6], etc) and the neutron scattering length densities (var[3], var[7], etc). 

This RPA (mean field) formalism applies only when the multicomponent polymer 
mixture is in the homogeneous mixed-phase region.

REFERENCE
A.Z. Akcasu, R. Klein and B. Hammouda, Macromolecules 26, 4136 (1993)

TEST DATASET
This example dataset is produced by running the Macro PlotRPAForm() for CASE 1, 
using 100 data points, qmin = 0.001 Å^-1,  qmax = 0.5 (Å^-1) and the above default 
fitting and input parameter values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Polyelectrolyte - Borue

MACRO : FUNCTION
PlotBE_Polyelectrolyte() : BEPolyelectrolyte(w,y,x) 
Wave extension: _BE
File:

BE_Polyelectrolyte.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
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Giovanni  Nisato 30 NOV 1998

APPROVED FOR DISTRIBUTION
Steve Kline 07 DEC 1998

DESCR IPT ION
Calculates the structure factor of a polyelectrolyte solution with the RPA expression 
derived by Borue and Erukhimovich. 
Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1]

K  = contrast factor of the polymer  (barns = 10-24 cm^2)
NB: K = a^2  with:  a = (bp - vp/vsolvent * bsolvent)

 where: b = Sum of the scattering lengths of the atoms constituting the 
Monomer of the polymer under consideration.

vp = partial molar volume of the polymer ; 
vsolvent= partial molar volume of the solvent

Lb = Bjerrum length(Å) 
Nb: This parameter needs to be kept constant for a given solvent and temperature!  

h = virial parameter (Å3)
NB : See (1) for the correct interpretation of this parameter.  It incorporates second 
and third virial coefficients and can be Negative

b = monomer length  (Å)
Cs = concentration of monovalent salt (mol/L)
Alpha = ionization degree : ratio of charged monomers  to total number of monomers
C  = polymer molar concentration (mol/L)
Bkd = Background
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The fitting procedure does not follows the notation of (1) since the two parameters 's' 
and 't' are NOT decoupled.

The following expression is used instead: 

 Sq = K*1./(4*Pi*Lb*alpha^2)  * (q2 + k2)  /  (1+(r02^2) * (q2+k2) * (q2- 
(12*h*C/b^2)) ) + Bkd

The procedure fits the data using the following internal parameter:
k2= 4*Pi*Lb*(2*Cs+alpha*C)   

which corresponds to the  classical definition of the inverse Debye length, squared. 

An alternative definition for for ANNEALED (weak) polyelectrolytes (e.g. : polyacrylic 
acid) is given by  (4): 

k2= 4*Pi*Lb*(2*Cs+2*alpha*Ca)   

REFERENCE
1) Borue, V. Y.; Erukhimovich, I. Y. Macromolecules 1988, 21, 3240.
2) Joanny, J.-F.; Leibler, L. Journal de Physique 1990, 51, 545.
3) Moussaid, A.; Schosseler, F.; Munch, J.-P.; Candau, S. J. Journal de Physique II 
France 1993, 3, 573.
4) Raphaël, E.; Joanny, J.-F. Europhysics Letters 1990, 11, 179.

TEST DATASET
This example dataset is produced by running the Macros:
 * PlotBE(), using 512 data points, qmin = 0.001 Å^-1,  qmax = 0.2 (Å^-1) 

and the above default coef_BE values.
 * PlotSmearedBE(), using the QSIG_4M_22.AVE data set for the smeared q values

and the above default coef_BE values.
It reproduces the results found in reference (3).
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Two-Phase Structures

Lorentz

MACRO : FUNCTION
Plot_Lorentz() : Lorentz(w,y,x) 
Wave extension: _Lorentz
File:

Lorentz_model.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
John Barker 22 FEB 1999

APPROVED FOR DISTRIBUTION
Steve Kline 24 FEB 1999

DESCR IPT ION
Model describes a Lorentzian (Ornstein-Zernicke) including a flat background,
  

I(q) = I0 / [ 1 + {qL}2 ] + BGD
 
with screening length L.  The parameters I0, L, and BGD can all be adjusted during 
fitting.

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

TEST DATASET
This example dataset is produced by the Macro Plot_Lorentz() using the default 
parameter values given above. The q-range has been restricted to (0.001,0.2) Å-1.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debye-Anderson-Brumberger

MACRO : FUNCTION
PlotDAB() : DAB_Model(w,y,x) 
Wave extension: _DAB
File:

DAB_model.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Charlie Glinka 5 DEC 1998

APPROVED FOR DISTRIBUTION
Steve Kline 4 JAN 1999

DESCR IPT ION
Calculates the scattering from a randomly distributed (i.e. nonparticulate), two-phase 
system based on the Debye-Anderson-Brumberger (DAB) model for such systems.  The 
two-phase system is characterized by a single length scale, the correlation length, 
which is a measure of the average spacing between regions of phase 1 and phase 2.  The 
model also assumes smooth interfaces between the phases and hence exhibits Porod 
behavior (I ~ Q^-4) at large Q (Q*correlation length >> 1).  The macroscopic scattering 
cross-section in the DBA model is given by
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where xi is the correlation length in Å.

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is in units of [cm^-1].

The scale factor, A or w[0], is treated as an independent fitting parameter, but is, in the 
DAB model, related to the volume fractions of the two phases, φ1 and φ2, and their 
contrast, (sld_1 - sld_2)^2, as follows:

The surface, S, to volume, V, ratio for the system is given by

REFERENCES
Debye, P., Anderson, R., Brumberger, H., "Scattering by an Inhomogeneous Solid. II. The 
Correlation Function and Its Application," J. Appl. Phys. 28 (6), 679 (1957).

Debye, P., Bueche, A. M., "Scattering by an Inhomogeneous Solid," J. Appl. Phys. 20, 
518 (1949).

TEST DATASET
This example dataset is produced by multiplying the values generated by the Macro 
PlotDAB() (using the default parameter values given above) by (1 + gnoise(.05)) to 
simulate real data with 5% gaussian noise. The q-range has been restricted to 
(0.001,0.05) Å-1. The weighting wave was set to 1/sqrt(ywave_DAB) at the default 
coefficient values.
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Starting values for test fit:

Fitted values and standard deviations

Sum of squares = 10.04 (for 512 data points), so sqrt(chi_sq/N) = 0.14

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

General Power-Law

MACRO : FUNCTION
PlotPower_Law() : Power_Law(w,y,x) 
Wave extension: _Power_Law
File:

Power_Law_model.ipf
Requires: 

GaussUtils.ipf
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PlotUtils.ipf

AUTHOR/MODIFICATION
John Barker 10 FEB 1999

APPROVED FOR DISTRIBUTION
Steve Kline 24 FEB 1999

DESCR IPT ION
Model describes a power-law including a flat background,
  

I(q) = A q-m + BGD
 
with the intensity at q=1 being A, decaying with power -m.  The parameters A, m and 
BGD can all be adjusted during fitting.

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

TEST DATASET
This example dataset is produced by the Macro PlotPower_Law() using the default 
parameter values given above. The q-range has been restricted to (0.001,0.2) Å-1.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

G u i n i e r - P o r o d

MACRO : FUNCTION
PlotGuinierPorod() : GuinierPorod(w,x)

Wave extension : _GP
File:

Guinier_Porod.ipf
Requires: 

none

AUTHOR/MODIFICATION
Boualem Hammouda 25 JAN 2010

APPROVED FOR DISTRIBUTION
Steve Kline 25 JAN 2010

DESCR IPT ION
Calculates the scattering for a generalized Guinier/power law object. This is an 
empirical model that can be used to determine the size and dimensionality of scattering 
objects.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is P(Q) as written in equation (1), plus the incoherent background 
term. The result is in the units of [cm-1s r-1], absolute scale.

A Guinier-Porod empirical model can be used to fit SAS data from asymmetric objects 
such as rods or platelets. It also applies to intermediate shapes between spheres and rod 
or between rods and platelets. The following functional form is used: 

 ( 1 )
 .

This is based on the generalized Guinier law for such elongated objects [2]. For 3D 
globular objects (such as spheres), s = 0 and one recovers the standard Guinier 
formula. For 2D symmetry (such as for rods) s = 1 and for 1D symmetry (such as for 
lamellae or platelets) s = 2. A dimensionality parameter 3-s is defined, and is 3 for 
spherical objects, 2 for rods, and 1 for plates.

Enforcing the continuity of the Guinier and Porod functions and their derivatives yields:

 ( 2 )

( 2 )
and

( 3 )

Note that the radius of gyration for a sphere of radius R is given by  , 
 that for the cross section of an randomly oriented cylinder of radius R is given by 
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 . The cross section of a randomly oriented lamella of thickness T is given by 

.

The intensity given by Eq. 1 is the calculated result, and is plotted below for the default 
parameter values. 

REFERENCE
[1] Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

[2] Glatter, O.; Kratky, O., “Small-Angle X-Ray Scattering”, Academic Press (1982). 
Check out Chapter 4 on Data Treatment, pages 155-156.  

TEST DATASET
This example dataset is produced by running the Macro PlotGuinierPorod(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_GP values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Gaussian Peak

MACRO : FUNCTION
PlotPeak_Gauss() : Peak_Gauss(w,y,x) 
Wave extension: _Peak_Gauss
File:

Peak_Gauss_model.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
John Barker 12 FEB 1999

APPROVED FOR DISTRIBUTION
Steve Kline 24 FEB 1999

DESCR IPT ION
Model describes a Gaussian shaped peak including a flat background,
  

I(q) = I0 exp [ -1/2 {(q-q0)/B}2 ] + BGD
 
with the peak having height of I0 centered at qpk having standard deviation of B.  The 
fwhm is 2.354*B.   Parameters I0, B, qpk, and BGD can all be adjusted during fitting.

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):

TEST DATASET
This example dataset is produced by the Macro PlotPeak_Gauss() Using the default 
parameter values given above. The q-range has been restricted to (0.001,0.2) Å-1.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Lorentzian Peak

MACRO : FUNCTION
PlotPeak_Lorentz() : Peak_Lorentz(w,y,x)
Wave extension: _Peak_Lorentz 
File:

Peak_Lorentz_model.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
John Barker 10 FEB 1999

APPROVED FOR DISTRIBUTION
Steve Kline 24 FEB 1999

DESCR IPT ION
Model describes a Lorentzian shaped peak including a flat background,
  

I(q) = I0 / [ 1 + {(q-q0)/B}2 ] + BGD
 
with the peak having height of I0 centered at qpk having a hwhm (half-width-half-
maximum) of B.  The parameters I0, B, qpk, and BGD can all be adjusted during fitting.

Resolution smeared version is also provided.

VARIABLES
Input Variables (default values):
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TEST DATASET
This example dataset is produced by the Macro PlotPeak_Lorentz() using the default 
parameter values given above. The q-range has been restricted to (0.001,0.2) Å-1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fractal with Monodisperse Spheres

MACRO : FUNCTION
PlotFractal() : Fractal(w,y,x)
Wave extension: _fra
NumberDensity_Fractal() 
File:

Fractal.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002
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APPROVED FOR DISTRIBUTION
John Barker 17 DEC 2003

DESCR IPT ION
Calculates the scattering from fractal-like aggregates built from spherical building 
blocks following the Texiera reference.

A macro is provided to calculate the number density, aggregation number, and other 
parameters based on the volume fraction and polydisperse particle volume (weighted 
using the 3rd moment of the radius).

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by

I(q) = P(q) S(q) + bkgd

where P(q) is the scattering from randomly distributed spherical "building block" 
particles, having  radius R0 = w[1], volume fraction φ = w[0], scattering length density 
difference Δρ = w[4]-w[5].

where VP = (4/3) πR0
3 and

The spherical building blocks aggregate to form fractal-like clusters.  The clusters have 
a correlation length ξ = w[3] corresponding to their overall size, and self-similarity 
dimension Df = w[2].  From Teixeira reference, the interference from building blocks of 
fractal-like cluster can be calculated from eq. 16 as
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The macro "NumberDensity_Fractal" calculates the number density of building blocks 
N0 = φ/ VP, and the mean number of blocks per cluster, aggregation number G = S(0)= 

Γ(D+1)(ξ/R0) D, and the Guinier radius of cluster, RG
2 = D(D+1)ξ2/2.

w[0] (scale) and (w[4]-w[5])^2 (contrast) are multiplicative factors in the model and 
are perfectly correlated. Only one of these parameters should be left free during model 
fitting.

REFERENCE
J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785

TEST DATASET
This example dataset is produced by running the Macro PlotFractal(), using 128 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_fra values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fractal with Polydisperse Spheres

MACRO : FUNCTION
PlotFractalPolySphere() : FractalPolySphere(w,x)

177



Wave extension : _fraPolySph
File:

Fractal_PolySphere.ipf
Requires: 

AUTHOR/MODIFICATION
Andrew Jackson JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculates the scattering from a fractal structure with a primary building block of 
polydisperse spheres instead of the typical monodisperse spheres. Polydispersity of the 
sphere radius is described by a Schulz distribution and the fractal structure is as 
documented in the fractal model.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as documented in the fractal model, using 
Schulz-distributed spheres as the base building block of the fractal. See each of these 
individual models for full documentation.

REFERENCE

See the SchulzSphere and Fractal documentation.

TEST DATASET

This example dataset is produced by running the Macro FractalPolySphere(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_fraPolySph 
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values.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fractal with Polydisperse Core-Shell Spheres

MACRO : FUNCTION
PlotFractalPolyCore() : FractalPolyCore(w,x)

Wave extension : _fraPolyCore
File:

Fractal_PolyCore.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a fractal structure with a primary building block of 
polydisperse core-shell spheres instead of the typical monodisperse spheres. 
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Polydispersity of the sphere radius is described by a Schulz distribution, and there is a 
shell of constant thickness on each sphere. The fractal structure is as documented in the 
fractal model. This model could find use for aggregates of coated particles, or aggregates 
of vesicles.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as documented in the fractal model, using 
Schulz-distributed core-shell spheres (PolyCore) as the base building block of the 
fractal. See each of these individual models for full documentation.

REFERENCE

See the PolyCore and Fractal documentation.

TEST DATASET

This example dataset is produced by running the Macro FractalPolyCore(), using 128 
data points, qmin = 0.001 Å-1,  qmax = 0.5 Å-1 and the above default coef_fraPolyCore 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Teubne r -S t rey

MACRO : FUNCTION
PlotTeubnerStreyModel() : TeubnerStreyModel(w,y,x) 
Wave extension: _ts
TeubnerStreyLengths()

File:
Teubner.ipf

Requires: GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 06 NOV 1998

APPROVED FOR DISTRIBUTION
Sungmin Choi 02 FEB 1999

DESCR IPT ION
This function calculates the scattered intensity of a two-component system using the 
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Teubner-Strey model. It is most applicable to microemulsions.

VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is on an arbitrary scale.

the function calculated is:

where the correlation length (the dispersion of d) is:

and the quasi-periodic repeat distance is:

w[1] (= a2) acts as a scale factor, taking note that it is in the denominator and will 
affect the magnitude of c1 and c2.

The Macro TeubnerStreyLengths() calculates the correlation length and repeat distance 
based on the values in the coefficient table.

REFERENCE
Teubner, M; Strey, R. J. Chem. Phys., 1987, 87, 3195.
Schubert, K-V.; Strey, R.; Kline, S. R.; and E. W. Kaler J. Chem. Phys., 1994, 101, 
5343.

TEST DATASET
This example dataset is produced by running the Macro PlotTeubnerStreyModel(), using 
128 data points, qmin = 0.001 Å^-1,  qmax = 0.7 (Å^-1) and the above default coef_ts 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Unified Power-Law and Rg

MACRO : FUNCTION
PlotBeau_One() : OneLevel(w,y,x)
PlotBeau_Two() : TwoLevel(w,y,x)
PlotBeau_Three() : ThreeLevel(w,y,x)
PlotBeau_Four() : FourLevel(w,y,x)

Wave extension: _b(N)
File:

Beaucage.ipf
Requires: 

GaussUtils.ipf
PlotUtils.ipf

AUTHOR/MODIFICATION
Steve Kline 12 SEP 2002

APPROVED FOR DISTRIBUTION
John Barker 17 DEC 2003

DESCR IPT ION
Program incorporates the empirical multiple level unified Exponential/Power-law fit 
method developed by G. Beaucage. Four functions are included so that One, Two, Three, or 
Four levels can be used. Resolution smeared versions are provided for all models.

VARIABLES
Input Variables (default values for two levels):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.  The empirical 
expressions are able to reasonably approximate the scattering from many different 
types of particles, including fractal clusters, random coils (Debye equation), ellipsoidal 
particles, etc.  The empirical fit function is  

For each level, the four parameters Gi, Rg,i, Bi and Pi must be chosen.  

For example, to approximate the scattering from random coils (Debye equation), set Rg,i 
as the Guinier radius, Pi = 2, and Bi = 2 Gi / Rg,i  

See the listed references for further information on choosing the parameters.

REFERENCES
G. Beaucage (1995).  J. Appl. Cryst., vol. 28, p717-728.
G. Beaucage (1996).  J. Appl. Cryst., vol. 29, p134-146.

TEST DATASET
This example dataset is produced by running the Macro PlotBeau_two(), using 128 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_b2 values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gauss-Lorentz Gel

MACRO : FUNCTION
PlotGaussLorentzGel() : GaussLorentzGel(w,x)

Wave extension : _GL_Gel
File:

GaussLorentzGel.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculates the scattering from a gel structure, typically a physical network. It is 
modeled as a sum of a low-q exponential decay plus a lorentzian at higher q-values. It is 
generally applicable to gel structures.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated as (eqn 5 from the reference):

Uppercase Zeta is the static correlations in the gel, which can be attributed to the 
"frozen-in" crosslinks of some gels. Lowercase zeta is the dynamic correlation length, 
which can be attributed to the fluctuating polymer chain between crosslinks. IG(0) and 
IL(0) are the scaling factors for each of these structures. Your physical system may be 
different, so think about the interpretation of these parameters.

Note that the peaked structure at higher q values (from Figure 2 of the reference below) 
is not reproduced by the model. Peaks can be introduced into the model by summing this 
model with the Peak_Gauss_Model function.

REFERENCE

G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42 (2001) 2907-
2913.

TEST DATASET

This example dataset is produced by running the Macro GaussLorentzGel(), using 256 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_GL_Gel values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Two Power Laws

MACRO : FUNCTION
PlotTwoPowerLaw() : TwoPowerLaw(w,x)

Wave extension : _TwoPowerLaw
File:

Two_Power_Law.ipf
Requires: 

AUTHOR/MODIFICATION
Steve Kline JUN 2008

APPROVED FOR DISTRIBUTION
Andrew Jackson JUN 2008

DESCR IPT ION

Calculate an empirical functional form for SANS data characterized by two power laws.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by:

qc is the location of the crossover from one slope to the other. The scaling A, sets the 
overall intensity of the lower Q power law region. The scaling of the second power law 
region is scaled to match the first. Be sure to enter the power law exponents as positive 
values.

REFERENCE
none

TEST DATASET
This example dataset is produced by running the Macro PlotTwoPowerLaw(), using 512 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_TwoPowerLaw 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Correlation Length Model

MACRO : FUNCTION
PlotCorrLength() : CorrLength(w,x)

Wave extension : _CorrLength
File:

CorrelationLengthModel.ipf
Requires: 

AUTHOR/MODIFICATION
Boulaem Hammouda JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculate an empirical functional form for SANS data characterized by a low-Q signal and 
a high-Q signal
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VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by:

The first term describes Porod scattering from clusters (exponent = n) and the second 
term is a Lorentzian function describing scattering from polymer chains (exponent = 
m). This second term characterizes the polymer/solvent interactions and therefore the 
thermodynamics. The two multiplicative factors A and C, the incoherent background B 
and the two exponents n and m are used as fitting parameters. The final parameter (xi) 
is a correlation length for the polymer chains. Note that when m = 2, this functional 
form becomes the familiar Lorentzian function.

REFERENCE
B. Hammouda, D.L. Ho and S.R. Kline, “Insight into Clustering in Poly(ethylene oxide) 
Solutions”, Macromolecules 37, 6932-6937 (2004).

TEST DATASET
This example dataset is produced by running the Macro PlotCorrLength(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_CorrLength 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Two Lorentzians

MACRO : FUNCTION
PlotTwoLorentzian() : TwoLorentzian(w,x)

Wave extension : _TwoLorentzian
File:

TwoLorentzian.ipf
Requires: 

AUTHOR/MODIFICATION
Boulaem Hammouda JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculate an empirical functional form for SANS data characterized by a two Lorentzian 
functions.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by:

A = Lorentzian scale #1
C = Lorentzian scale #2

REFERENCE
none

TEST DATASET
This example dataset is produced by running the Macro PlotTwoLorentzian(), using 200 
data points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_TwoLorentzian 
values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Broad Peak

MACRO : FUNCTION
PlotBroadPeak() : BroadPeak(w,x)

Wave extension : _BroadPeak
File:

BroadPeak.ipf
Requires: 

AUTHOR/MODIFICATION
Boulaem Hammouda JUN 2008

APPROVED FOR DISTRIBUTION
Steve Kline JUN 2008

DESCR IPT ION

Calculate an empirical functional form for SANS data characterized by a broad scattering 
peak. Many SANS spectra are characterized by a broad peak even though they are from 
amorphous soft materials. The d-spacing corresponding to the broad peak is a 
characteristic distance between the scattering inhomogeneities (such as in lamellar, 
cylindrical, or spherical morphologies or for bicontinuous structures). 
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VARIABLES
Input Variables (default values):

USAGE NOTES
The returned value is scaled to units of [cm-1s r-1], absolute scale.

The scattering intensity I(q) is calculated by:

Here the peak position is related to the d-spacing as Q0 = 2pi/d0. Soft systems that show 
a SANS peak include copolymers, polyelectrolytes, multiphase systems, layered 
structures, etc. 

REFERENCE
none

TEST DATASET
This example dataset is produced by running the Macro PlotBroadPeak(), using 200 data 
points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default coef_BroadPeak values.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Anisotropic Models

Anisotropic scattering patterns originate from the scattering of oriented materials. c-
code for the 2D models has been provided as part of the DANSE project:
<http://danse.us/trac/sans>

For these oriented cylindrical objects, the orientation of the cylinder axis relative to 
the beam and detector is shown below. If a particular model has additional orientation 
angles they will be described as part of that model documentation. Note that theta is 
defined between [0,Pi] and phi is defined between [0,2Pi].
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In most of the models, the following definitions apply:
- theta is defined as the angle between the axis of the cylinder and the incident beam.
- phi is defined as the angle between the axis of the cylinder and the detector plane.
- psi (in the case of an elliptical cross section) is defined as the angle between the major axis 
of the ellipse and the vector Q. This is related to the definition of the angle alpha, as defined 
below.

The scattering ampliude of many of the cylindrical models are defined in their original 
references in terms of an angle alpha, defined as the angle between the axis of the cylinder 
and Q. To convert theta and phi (above) to alpha:

The components of Q are (qx,qy,qz). Since the SANS detector is in the xy plane, qz = 0.
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Oriented Cylinder

MACRO : FUNCTION
PlotCylinder2D() : Cylinder2D(w,y,x) 
Wave extension: _Cyl2D
File:

Cylinder_2D.ipf
Requires: 

PlotUtils2D.ipf

AUTHOR/MODIFICATION
Mathieu Doucet   01 JAN 2008

APPROVED FOR DISTRIBUTION
Steve Kline 01 FEB 2008

DESCR IPT ION
This function calculates the scattering from an oriented cylinder. The angles theta and 
phi define the orientation of the cylinder. A gaussian poydispersity can be added to any 
(or all) of the orientation angles and the radius.

VARIABLES
Input Variables (default values):

USAGE NOTES
The calculation returns the intensity, in units of [cm^-1]. What is calculated is:

The scattering amplitude of an oriented cylinder, F, is below. Alpha is the angle between 
the cylinder axis and Q:
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If the polydispersity (sigma) is used for the orientation distributions, p(θ,φ) is a 
Gaussian distribution of the orientation angles. Radius distribution is an additional 
integration over a Gaussian distribution of radius.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This data set is produced when plotting the 2D cylinder model using the default 
parameters, and a 64x64 detector with:
(-Qx,Qx)(-Qy,Qy) = (-0.1,0.1)(-0.1,0.1) [A^-1]
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Oriented Core-Shell Cylinder

MACRO : FUNCTION
PlotCoreShellCylinder2D() : CoreShellCylinder2D(w,y,x) 
Wave extension: _CSCyl2D
File:

CoreShellCyl2D.ipf
Requires: 

PlotUtils2D.ipf

AUTHOR/MODIFICATION
Mathieu Doucet   01 JAN 2008

APPROVED FOR DISTRIBUTION
Steve Kline 01 FEB 2008

DESCR IPT ION
This function calculates the scattering from an oriented cylinder with a core-shell 
structure. The angles theta and phi define the orientation of the cylinder. A gaussian 
poydispersity can be added to any (or all) of the orientation angles and the radius.

VARIABLES
Input Variables (default values):
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USAGE NOTES
The calculation returns the intensity, in units of [cm^-1]. What is calculated is:

The scattering amplitude of an oriented core-shell cylinder, F, is below. Alpha is the 
angle between the cylinder axis and Q:

If the polydispersity (sigma) is used for the orientation distributions, p(θ,φ) is a 
Gaussian distribution of the orientation angles. Radius distribution is an additional 
integration over a Gaussian distribution of radius.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This data set is produced when plotting the 2D core-shell cylinder model using the 
default parameters, and a 64x64 detector with:
(-Qx,Qx)(-Qy,Qy) = (-0.1,0.1)(-0.1,0.1) [A^-1]
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Oriented Elliptical Cylinder

MACRO : FUNCTION
PlotEllipticalCylinder2D() : EllipticalCylinder2D(w,y,x) 
Wave extension: _EllCyl2D
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File:
EllipticalCylinder2D.ipf

Requires: 
PlotUtils2D.ipf

AUTHOR/MODIFICATION
Mathieu Doucet   01 JAN 2008

APPROVED FOR DISTRIBUTION
Steve Kline 01 FEB 2008

DESCR IPT ION
This function calculates the scattering from an oriented elliptical cylinder. The angles 
theta and phi define the orientation of the axis of the cylinder. The  angle psi is defined as 
the orientation of the major axis of the ellipse with respect to the vector Q. A gaussian 
poydispersity can be added to any (or all) of the orientation angles, and also for the 
minor radius and the ratio of the ellipse radii.

VARIABLES
Input Variables (default values):

USAGE NOTES
The function calculated is:

with the functions:
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and the angle psi is defined as the orientation of the major axis of the ellipse with 
respect to the vector Q.

REFERENCE
L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 
Scattering”, Plenum, New York, 1987.

TEST DATASET
This data set is produced when plotting the 2D elliptical cross section cylinder model 
using the default parameters, and a 64x64 detector with:
(-Qx,Qx)(-Qy,Qy) = (-0.1,0.1)(-0.1,0.1) [A^-1]
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Oriented Ell ipsoid

MACRO : FUNCTION
PlotEllipsoid2D() : Ellipsoid2D(w,y,x) 
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Wave extension: _Ell ip2D
File:

Ellipsoid2D.ipf
Requires: 

PlotUtils2D.ipf

AUTHOR/MODIFICATION
Mathieu Doucet   01 JAN 2008

APPROVED FOR DISTRIBUTION
Steve Kline 01 FEB 2008

DESCR IPT ION
This function calculates the scattering from an oriented ellipsoid. The angles theta and 
phi define the orientation of the axis of the ellipsoid. The angle theta is always taken to be 
the angle between the rotation axis and z. A gaussian poydispersity can be added to any 
(or all) of the orientation angles, and also for either radius of the ellipsoid.

VARIABLES
Input Variables (default values):

USAGE NOTES
The calculation returns the intensity, in units of [cm^-1]. What is calculated is:

where the scattering amplitude is given by:
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If the polydispersity (sigma) is used for the orientation distributions, p(θ,φ) is a 
Gaussian distribution of the orientation angles. Radius distribution is an additional 
integration over a Gaussian distribution of radius.

REFERENCE
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, 
New York, (1955).

TEST DATASET
This data set is produced when plotting the 2D ellipsoid model using the default 
parameters, and a 64x64 detector with:
(-Qx,Qx)(-Qy,Qy) = (-0.1,0.1)(-0.1,0.1) [A^-1]
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• How Form Factors and Structure Factors are Combined

In a colloidal dispersion, there are typically discrete particles of different atomic 
composition from the surrounding solvent. It is then convenient to divide the 
scattering volume into Np cells, each containing one particle and structureless 
solvent. The scattered intensity from a collection of discrete particles can be written 
as:

( 1 )

where  and  are the centers of mass of cells k and j respectively. The scattering 
amplitude is a Fourier integral of the distribution of scattering length density within 
each cell, but since the solvent has a constant scattering length density, only the 
difference in scattering length densities applies:

( 2 )
So the scattering amplitude of a cell depends only on the scattering length density of 
the particle (which need not be constant) and the scattering length density of the 
solvent, and becomes an integral over the particle volume. For the special case of 

monodisperse spherical particles,  , and Equation 1 can be 
factored into the form:
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( 3 )
where np is the number density of particles.  This is compactly represented as

( 4 )
by identifying the term in the angle brackets as the form factor, P(q), and the term in 
parentheses as the structure factor, S(q).

The structure factor contains all of the information about the spatial arrangement 
of the particles relative to an arbitrary origin.  For the case of an isotropic solution, 
the average can be calculated around a centrally located sphere.  The orientational 
average can be calculated as:

( 5 )
The pair correlation function, g(r), can be calculated using liquid state theory, and 
thus the structure factor can be calculated.  The pair correlation function can be 
related to thermodynamic properties of the fluid such as pressure or compressibility.
To obtain information from systems of interacting colloids, it is necessary to model 
the scattered intensity by calculating the form and structure factors.  This is easily 
done for monodisperse, spherical particles.  However, real colloidal dispersions are 
not monodisperse, and not always spherical.  The following sections describe the 
approximations that can be used to treat the scattering from polydisperse populations, 
and special cases that can be treated without approximation.

The effect of interactions between particles - even excluded volume interactions - 
must be taken into account when interpreting the scattered intensity.  For particles of 
known morphology, it is often desirable to determine the unknown interparticle 
potential.  This is done by proposing an interaction potential, using statistical 
mechanics to calculate S(q), and fitting the model to the data.
The interparticle potential determines the equilibrium arrangement of particles, 
g(r), from which S(q) can be calculated.  For a homogeneous, isotropic fluid of 
spheres, the Ornstein-Zernicke equation is:

( 8 )
and states that the total correlation, h(r), between two particles is the sum of the 
direct correlations, c(r), and the sum of all other correlations which are felt 
indirectly through all other particles.  The structure factor S(q) depends directly on 
c(r) (compare Equations 5 and 8).  Unfortunately, c(r) and h(r) are both unknown 
functions, and the Ornstein-Zernicke equation can only be solved if there is available 
an additional relation between them.  This additional equation is an approximation, 
called a closure relation, which relates h(r) and c(r).

The simplest of these closure relations is the Percus-Yevick closure,
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( 9 )
which provides a good description of fluids with very short ranged interactions.  For 
the simplest case of hard sphere interactions:

(10)
c(r) is identically zero for .  In this case an analytic solution for the structure 
factor can be found.  Short ranged attractive interactions combined with the PY 
closure also yield analytical solutions for the structure factor.  The first of these is 
the square well (SW) potential:

(11)
The range of the square well is given by λ, and is typically less than 1.5.  Comparison 
of the S(q) calculated for the square well potential to Monte Carlo data shows the 
calculated S(q) to be reliable for low volume fractions (φ< 0.08) and well depths of 
Uo < 1.5 kT.  If the attractive interactions are shorter - ranged, the sticky hard 
sphere potential (SHS) can be used.  This is a perturbation solution of the PY closure 
for the case of a narrow square well of width Δ and depth Uo.  The perturbation 

parameter is , and must be less than 0.1.  The SHS potential has the 
advantage that the phase diagram can be determined analytically.
The screened Coulomb interaction:

(12)
is a good description of macroions in solution.  Since the screened Coulomb repulsion 
is much longer ranged than hard sphere interactions, a different, more appropriate 
closure relation will take this into account.  The mean spherical approximation 
(MSA) closure is:

(13)
The screened Coulomb potential can be solved for S(q) with the MSA closure using a 
numerical procedure.  A rescaling procedure (RMSA) corrects inaccuracies that 
occur at low particle concentrations.

A more accurate closure relationship for charged colloids is the Rogers-Young 
(RY) closure.  This scheme introduces an adjustable parameter, α, that interpolates 
between the PY closure (good for short - ranged potentials) and the hypernetted chain 
(HNC) closure (good for longer - ranged potentials).  The form of the closure is:

(14)

where  .  For small values of r or α the closure reduces to the PY 
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closure.  The opposite conditions give the HNC closure. The major disadvantage of this 
scheme is that the integral equations must be solved numerically, and iteratively, 
until thermodynamic consistency is achieved, and is not (yet) implemented in these 
macros.

Up to this point, the discussion of form and structure factors has been limited to 
the simplest, but unrealistic, case of monodisperse particles.  Real colloidal 
dispersions are polydisperse, and contain p different-sized components.  To properly 
treat a general p-component mixture greatly complicates the analysis of SANS data, 
and can quickly make the problem intractable if simplifying approximations are not 
made.  Care must be taken that any approximations are appropriate.

For a p-component mixture of spheres, the scattered intensity takes a slightly 
more complicated form than Equation 4:

(15)
but still retains the same essential features as the monodisperse form.  The scattered 
intensity is proportional to the concentration of scatterers, ni, the scattering 
amplitudes, fi(q), and now also the partial structure factors, defined by:

(16)
which are the Fourier representation of the arrangement of spheres of type j around a 
centrally located i particle.  is the Kronecker delta, and equals one if i = j, and is 
zero otherwise.  For p components, p(p+1)/2 independent partial structure factors 
are necessary to describe the microstructure.  These are related to the partial pair 
correlation functions, gij(r) through the set of multicomponent Ornstein-Zernicke 
equations: 

(17)
which now require a set of closure relations to relate the hij(r) to the cij(r).  This set 
of equations has only been solved in closed form for hard sphere mixtures.  It has been 
solved for a binary population of spheres and for continuous Schulz-distributed 
spheres in the PY approximation. Interaction potentials other than hard spheres 
require different, more appropriate closure relations, and the set of Ornstein-
Zernicke (integral) equations must be solved numerically for the partial structure 
factors.

For polydisperse spherical particles, if the particle sizes and orientations are 
uncorrelated, the scattered intensity can be written in a familiar form known as the 
"Decoupling approximation":

(18)
with the following definitions for the average form factor:
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(19)
and the effective structure factor:

(20)
where S(q) is the one component structure factor for the average radius.  The 
horizontal bars represent an average over the size distribution.  This decoupling 
approximation is appropriate for repulsive interaction and moderate polydispersity 
(<20%).  For hard sphere or attractive interactions, there are significant deviations 
from the exact solution, especially at low q.  A second, better approximation is the 
"Average Structure Factor" approximation, where the scattered intensity is factored 
into the form:

(21)

where   is the effective single component structure factor and is strictly defined 
by appropriate matching with the exact multicomponent expression, Equation 15.  The 
horizontal bar over the amplitude signifies that the amplitude is first squared, then 

averaged over the size distribution. In the approximation,  is calculated using a 
monodisperse structure factor at an effective sphere diameter, σ, such that the 
approximated one-component system has the same number density np, and volume 
fraction as the polydisperse (p-component) system.

(22)
This approximation is superior to the decoupling approximation for hard sphere 
interactions and moderate polydispersities (<20%).

There are other approximations possible, but we have chosen to implement the 
average structure factor approximation, Equation 21, for its general accuracy and 
simplicity in implementation. All other approximations are still approximations, and 
no better or worse than this one. For spheres with excluded volume interactions (hard-
sphere) and Schulz polydispersity, you can test the valid range of the approximation 
yourself. The PolyHSInt.ipf model is an exact, multicomponent solution for this 
system which you can compare to the approximate calculation for the SchulzSphere 
model with a hard sphere structure factor. At large polydispersities and volume 
fractions the approximation is clearly useless. If the particles were also non-
spherical, the approximations would degrade at even lower values. Beware.

If the particles are non-spherical, but are monodisperse: the routines here take 
the non-spherical particle dimensions and convert them to an effective sphere 
diameter by equating the 2nd virial coefficient of the anisotropic particle to a sphere 
having the same 2nd virial coefficient. This effective sphere diameter is then used to 
calculate the effective structure factor. Naturally, as the particles become more 
anisotropic or more concentrated, the approximation becomes worse. The decoupling 
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approximation, Equations 18-20 could also be applied to non-spherical particles. The 
assumption is the same, one that the particle position is uncorrelated with its 
orientation. The decoupling approximation gives similar results to the average 
structure factor approach. It would always be preferable to have an exact technique, 
but there are currently none available.

Some of the model form factors do not have any S(q) combinations provided, such as:
- Cylinders with polydispersity (polydisperse AND non-spherical)
- Flexible cylinder models (can't be defined as a particle with an effective diameter)
- Parallelepiped (could use decoupling, but must first validate vs. simulations)
- Triaxial ellipsoid (could use decoupling, but must first validate vs. simulations) 

When possible, the form factor models presented here have been normalized by the 
average particle volume, Vp, so that the scale factor is effectively (n Vp = volume 
fraction), which is a more natural experimental unit than number density. For 
dilute, polydisperse systems, the number density is correctly calculated using the 
average particle volume, which is not the same as the volume of the particle with the 
mean radius.
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