Sin

sans.models.Sin

Provide sin(x) function as a BaseComponent model

class sans.models.Sin.Sin

Bases: sans.models.BaseComponent.BaseComponent

Class that evaluates a sin(x) model.

calculate_ER()
clone()

Return a identical copy of self

evalDistribution(qdist)

Evaluate a distribution of q-values.

  • For 1D, a numpy array is expected as input:

    evalDistribution(q)

where q is a numpy array.

  • For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], where 1D arrays,

qx_prime = [ qx[0], qx[1], qx[2], ....] and qy_prime = [ qy[0], qy[1], qy[2], ....]

Then get q = numpy.sqrt(qx_prime^2+qy_prime^2)

that is a qr in 1D array; q = [q[0], q[1], q[2], ....]

Note :

Due to 2D speed issue, no anisotropic scattering is supported for python models, thus C-models should have

their own evalDistribution methods.

The method is then called the following way:

evalDistribution(q) where q is a numpy array.

Parameters:qdist – ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays
getDispParamList()

Return a list of all available parameters for the model

getParam(name)

Set the value of a model parameter

Parameters:name – name of the parameter
getParamList()

Return a list of all available parameters for the model

getParamListWithToken(token, member)
getParamWithToken(name, token, member)
is_fittable(par_name)

Check if a given parameter is fittable or not

Parameters:par_name – the parameter name to check
run(x=0.0)

Evaluate the model @param x: input x, or [x, phi] [radian] @return: sin(x) or sin(x*cos(phi))*sin(x*sin(phi))

runXY(x=0.0)

Evaluate the model @param x: input x, or [x, y] [radian] @return: sin(x) or sin(x)*sin(y)

setParam(name, value)

Set the value of a model parameter

Parameters:
  • name – name of the parameter
  • value – value of the parameter
setParamWithToken(name, value, token, member)

Table Of Contents

Previous topic

Schulz

Next topic

SLDCalFunc

This Page