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1. Introduction

A set of programs for performing correlation function analysis of one dimensional SAXS
patterns have recently been written by Tom Nye (an undergraduate in the Applied Mathematics
Department at Cambridge) who worked for me for a month in the summer. This report is based
on the instruction manual he wrote to accompany the programs (which must be the first test
programs I have ever received with decent documentation!). The programs are based on the
SUN network at Daresbury, but have also been copied across and are working on a SUN at
UMIST. From a given SAXS image they calculate the one and three dimensional correlation
functions, and analyse the one dimensional function in terms of an ideal lamellar morphologyl.
The two correlation functions (called I'} and I'; respectively) are essentially Fourier transforms
of the given one dimensional SAXS curve2. They are often interpreted in terms of an
imaginary rod moving through the structure of the material from which the SAXS curve was
obtained. I'i(r) is the probability that a rod of length r moving through the material has equal
electron densities at either end. Hence a frequently occurring spacing within a structure shows
up as a peak in the one dimensional correlation function. The difference between I'; and I3 lies
in the assumptions made about the experimental material. The interpretation of I'; assumes that,
within the SAXS length scale, spacings occur along one fixed axis, but that the axis assumes
all possible directions throughout the material. Similarly, I'; assumes that spacings can occur in
all three dimensions within the SAXS length scale.

The task of calculating and interpreting the correlation functions can be broken down into three
logical parts:

+ Extrapolation of the experimental SAXS curve to g=== and ¢=0.

This 15 @ mathematical requirement for the Fourier transform to be performed. Any SAXS
experiment gives a finite number of intensity values at finite values of q necessitating this
extrapolation and a numerical integration to calculate the transforms. It should be stressed that
extrapolation to g=ee (tail fitting) is the most problematic task of correlation function analysis,
and can greatly influence results obtained; the programmes are called tailfitc and

* Fourier transformation of the extrapolated data.

[') Is based on a cosine Fourier transform, while 'y is based on a sine transform. The two
functions are related by a simple expression2. The program transform performs the Fourier
transformations. and 1s relatively simple. It can also re-transform I'y back into a smoothed copy
of the extrapolated data.

* Interpretation of I'} based on an ideal lamellar morphology.
A model is required for the interpretation of features of I'y 1o be possible. The program
extract performs this analysis. Note that no interpretation of ' is performed.

Correlation functions are extremely valuable tools in the interpretation of one dimensional
SAXS patterns, particularly those for which features are either weak or obscured (for example
shoulders). However, as with any involved method of analysis. care should be taken to ensure
results are genuine and meaningful.
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2. Program structure.
The programs were written in a modular form to enable the code to be incorporated in the GUI

version of otoko due over the next few years. The programs also had to be transportable
between systems. Each program is run from a UNIX shell script. The shell script runs each of
the programs in turn, and also controls graphics output. The programming behind this is
complicated, but was written to ease transport of the programs. To plot a graph, a program
creates otoko format files containing the data, and a set of shell scripts. The shell scripts run
otoko and force it to plot the data contained in the files just created. This may seem an
unnecessarily complicated way of producing plots, but it can be used on any system that
supports the Xwindows version of otoko, and in general works seamlessly. The programs
require an intensity file corrected for the transmission, background and detector response and a
g-axis from otoko

3. Programs

Tailfit fits either a Porod3 or sigmoid4 profile to the tail of the intensity data. It then passes
the fit parameters to tail join for extrapolation of the data to q=eo. The sigmoid profile
should generally be used. It uses an intensity profile of the form:

Ha)= B+ Ke’ %J

where B is a Bonart thermal background, K is the Porod constant, and o describes the electron
density profile at the interface between crystalline and amorphous sections

semicrystalline lamella stacks

low o electron density high o

The parameter o 1s in A, and is a measure of the width of the distribution that gives rise to the
sigmoid electron density profile. Fitting with a sigmoid profile is a non-linear problem, and
requires a robust fitting algorithm: a Levenburg-Marquart method? is used.

The Porod 1ail profile has the form

z’(q,f):B-*r"'yJ
q

;md usually gives poor quality correlation functions, it is included for completeness. However,

f a Porod proflle 15 used, a greater number of structural parameters can be extracted, including
mtumw surface to volume ratios and the Porod characteristic chord length. Fitting becomes a
linear problem, and so can be less problematic than fitting to a sigmoid profile.

The most important parameters controlled by the user are those concerning which data are used
for the tail fitting. If time-resolved data is being analysed, the user can input different channel
numbers for each frame. Choosing limits can be difficult, and some experimentation may be
required. As a general rule, the start channel should have a q value about twice that at which
any peak occurred in the intensity data. The end channel should be as large as possible, but
should avoid any detector noise.
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Since the experimental data is extrapolated to very high g, the majority of the data used in the
Fourier transform comes from the tail fit. It's therefore very important to check that the tail fit is
good. The tail affects points on the correlation function at low values of r (real space
coordinate) to the greatest extent, but these points are the most important in the extraction of
ideal lamellar morphology parameters. Hence the results from an analysis session depend
greatly on the tail fit. Choosing channel limits is a payoff between using as many points as
possible to ensure'a good fit, but wanting to keep as many points as possible from your
experimental data in the extrapolated data that is passed to the Fourier transform. A noisy tail
on the experimental data will result in poor tail fits, possibly making correlation function
analysis impossible.

Tailjoin extrapolates the experimental data back to q=0 using a Guinier model®. It then
creates otoko files containing intensities from q=0 to beyond q=0.6 using the parameters found
by tailfit. The intensity profile used by the Guinier model has the form:
1(g) = Ae®™

where B is negative. The Guinier model assumes the small angle scattering arises from
particles and the parameter B i1s related to the radius of gyration of those particles. This
obviously has dubious applicability to polymer systems. However, the correlation function is
affected by the Guinier back-extrapolation to the greatest extent at large values of r, and so the
back-extrapolation only has a small effect on the analysis. The Guinier profile is fitted to the
first few genuine scattering points after the beamstop. If your experimental data does not
contain an upturn in intensity at low ¢, back extrapolation may fail. As an alternative to the
Guinier profile, a Vonk profile can also be used

Due to the nature of the tail fitting, the join between experimental data and data in the calculated
tail usually involves a step that could cause ripples in the correlation function. Hence this join is
smoothed using a Savitzky-Golay3 smoothing algorithm that smoothes the joins without
greatly altering higher moments of the data. The point in q to which extrapolation is performed
affects the correlation functions, particularly if it is too small. The value of q=0.6 used by the
programs was decided on after experimentation, and gives smooth correlation functions
without loss of speed. The lower the truncation point is, the rougher the correlation functions,
while the higher the truncation point is. the slower the transform. A truncation point of q=0.6
corresponds to fluctuations in the correlation functions of about 10 A. These are usually not
observable.

Transform performs the integration's necessary to calculate the correlation functions and
second moment of the data. It also has the capability of re-transforming T’} back into a
scattering curve. I'y and I3 are given by:

oo
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where /(q) is the scattering intensity and Q is the second moment or invariant given by

= _I./(q)qqu

)dg

qr

Hence I'; (0) = T3 (0) = 1. Notice that every point in the extrapolated dataset will be used to
calculate each point on the correlation functions, leading to a smooth correlation function. Of
course, the integration is numerical and is only performed up to q=0.6 as discussed in the last
section. Together with the fluctuations introduced by this truncation, fluctuations are also
introduced into the correlation functions by the finite gap between points in the extrapolated
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dataset - we don't have intensity as a continuous function of q. As a final comment, note that
the numerical integration takes the form of a trapezium approximation.

Extract interprets I'] in terms of an ideal lamellar morphology, and extracts structural
parameters. The program also displays the results of calculating the moments of the
experimental SAXS curve, and Porod results. If tail fitting was performed using a Porod
instead of a sigmoid profile, a more detailed Porod analysis is performed. The program first
decides whether a lamellar interpretation can be applied. It searches for the first local minimum
with a negative I'; coordinate and the first local maximum with a positive I'y coordinate. If
these cannot be found, extraction of the lamella structural parameters is abandoned (for that
particular frame). If these features are found extraction can be performed, and will employ
these two features. Note these criteria very carefully: local minima above the abscissa will be
ignored and not used in the calculation of structural parameters. Similarly, local maxima below
the abscissa will not be used in the calculation of structural parameters. Indeed, the
interpretation of any one dimensional correlation function deviating from the ideal lamellar
model is not yet properly understood.

A diagram of the one dimensional correlation function from an real lamellar morphology is
given later. It is essentially a damped Patterson function and consists of a gradually decaying
oscillation, with an initial linear section at low values of r. Structural parameters are derived
from the positions of the first local minimum and local maximum, and the position and gradient
of the linear section, the complete set of parameters extracted are given below.

Parameter Symbol Measurement
Long period Lp As in diagram
Bulk crystallinity o I'min/ Tmin + %)
Shortest block thickness L¢ As in digeram
Longest block thickness Ly Lp -Le B

Local crystallinity Vi Lo/ Lp

Average core thickness Do As in diagram
Average interface thickness Dy As in diagram
Polydispersity Imin / Tinax
Electron density contrast Ap Q/0o(1-0)
Specific inner surface 20/L¢
Non-ideality (Lp - Lp*‘)2 / Lp3

Most of these parameters are given in referencel. The polydispersity measurement was
suggested to Tom by Guy Eeckhaut of ICI. The problem of determining Dyr and D() has not
been straightforward. Algorithms have been developed with consistency as a priority, so that
even if the structural interpretation of these parameters is dubious. the line they specify gives
consistent values to the bulk crystallinity. hard block thickness and so on. This has not been an
easy task, made harder by the fact that poor tail fits radically alter the appearance of '] at low r.
Extract is an exception to the rule that all user input occurs in tailinput, should the
lamella model fail then the user is requested to input values of the crystallinity, and some
control over the initial straight-line portion 1s also possible. If a Porod tail fit has been used
then extract will perform the surface to volume analysis.

7. Using the program on real data

An example of a SAXS pattern from a time resolved experiment on polypropylene is given
below. The data were collected in SAXS/WAXS/DSC mode on beamline 8.2 with a time
resolution of 6s. Note that the data are still quite noisy but the tail joins are good as indicated
by the smooth I'y which turns over at r -> (. There is good agreement between the long-
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spacing from the correlation function and that obtained by applying Braggs Law to the peak in
the Lorentz corrected intensity. In this experiment 256 frames were taken during melting and
recrystallisation and running the program on the full set took = 45 minutes on a SUN SPARC
IPX. The correlation function analysis proved invaluable in analysing the lamella thickness
and local crystallinity during melting and recrystallisation and given crucial insights into these
processes’.

8. Conclusion and recommendations.

The crux of the problem lies in tail fitting. The Fourier transformation of data seems to be error
free, and artefacts introduced by the extrapolation, while certainly present, don't often affect
the correlation functions-noticeably. But the appearance of the correlation functions, and the
structural parameters extracted, do depend greatly on the tail fit. Hence great care should be
taken when selecting channel limits for the tail fit. For realtime data it may be worthwhile to go
through the dataset frame by frame, using the graphics option to check each fitted tail. It's also
clear that the selection of the linear section of I'] in ext ract is yet to be perfected. While this
is an annoying problem, it is not a vital aspect of the analysis programs since the user can
always intervene. Extraction of structural parameters has concentrated on I'] up to the present.
If possible, a program equivalent to extract will be written to analyse I'3. Future
developments might include calculation of the interface distribution function from SAXS data
and ijmplication of the various methods for calculating degrees of crystallinity from WAXS
data<.
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