
Status report on inclusion of SESANS data

analysis in SASVIEW during

Sasview Code Camp III (February 2015)

Jurrian Bakker (j.h.bakker@tudelft.nl)
Wim Bouwman (w.g.bouwman@tudelft.nl)
all participants of the code camp 2015

October 6, 2016

1 The aim of the code camp

The aim of this work package is to add the ability to analyse SESANS data using
SasView. SasView is a software package designed to analyze scattering data by
graphical visualization and model fitting in reciprocal (Fourier) space. We will
extend this ability by allowing fitting in real space using Hankel transforma-
tion of existing SANS models and direct programming of real space scattering
models.

The long-term goal is to enable co-analysis of SANS and SESANS data.
SESANS can be used to increase the accuracy of low-Q data in a SANS ex-
periment; conversely, SANS data can be used to decrease experimental error at
low length scales in a SESANS experiment. If structural models could be fitted
in both real space and Fourier space simultaneously, SANS and SESANS data
would provide structural information at complementary length scales.

The work was divided into several stages:

1. Definition of data format (Section 2).

2. Enable dataloader package to read SESANS data and represent it in a
suitable structure.

3. Wrap SANS models into a SESANS data analysis wrapper to calculate
the projected correlation functions numerically from model parameters.

4. Combine the dataloader and SESANS data analysis wrapper with BUMPS
in fitting scripts.

5. Enable fitting of SESANS data through SasView GUI

1



The first four tasks have been completed to some extent: a data format is
proposed and a dataloader was created for this format (Section 2). Further
scripts will need to be written to convert instrument output data into this data
format. SESANS wrapper is able to combine with BUMPS to fit SESANS data
read in by the dataloader with some tweaks (Section 6). It was decided that
inclusion of SESANS analysis into the Sasview GUI would be too early at this
stage, since the Sasview GUI will undergo heavy rewriting to clean up the code
and create a more user-friendly interface.

So in conclusion: we have now the possibility to use the models available in
sasmodels to analyse SESANS-measurements in the command line in a devel-
opers environment. It is good for the experts, but not yet for users.

2 Data format

The current file extension is .ses or .sesans (not case sensitive).
Our preliminary suggestion for the file format is to have a list of name-value

pairs as a header at the top of the file, detailing general experimental parameters
necessary for fitting and analyzing data. This list should contain all information
necessary for the file to be ’portable’ between users.

Following that is a 6 column list of instrument experimental variables:

• Spin echo length (δ, in Angstroms)

• Spin echo length error (∆δ, in Angstroms) (experimental resolution)

• neutron wavelength (λ, in Angstroms) (essential for ToF instruments)

• neutron wavelength error (∆λ, in Angstroms)

• Normalized polarization (P/P0, unitless)

• Normalized polarization error (∆(P/P0), unitless) (measurement error)

The neutron wavelength appears in both scattering power (Σ) and spin echo
length (δ), making data analysis more complicated for Time-of-Flight SESANS
than for Monochromatic SESANS.

Σ = λ2t(∆ρ0)2φ(1 − φ)ξ (1)

δ =
cλ2BL

2π tan θ0
(2)

After discussion with partners (DUT/ISIS/ESS/ORNL, etc.), we might add
more items to the header. Extending the header will not be a problem, since
the dataloader has been written to allow for a 2-column header of arbitrary
length.

2



2.1 Example Data File

At the moment, the data file is a tab-separated text file. Using tab as a separator
elegantly avoids problems with whitespaces and special characters when parsing
the data (keeps the dataloader code short, simple and flexible).

DataFileTitle Polystyrene of Markus Strobl, Full Sine, ++ only

Sample Polystyrene 2 um in 53% H2O, 47% D2O

Settings D1=D2=20x8 mm,Ds = 16x10 mm (WxH), GF1 =scanning, GF2 = 2.5 A. 2 um polystyrene in 53% H2O, 47% D2O; 8.55% contrast

Operator CPD

Date ma 7 jul 2014 18:54:43

ScanType sine one element scan

Thickness [mm] 2

Q_zmax [\AA^-1] 0.05

Q_ymax [\AA^-1] 0.05

spin echo length [nm] error SEL wavelength [nm] error wavelength polarisation error pol

49.778 2.4889 0.211 0.01055 0.99782 0.0044367

63.041 3.152 0.211 0.01055 1.0026 0.0047862

76.487 3.8244 0.211 0.01055 0.99601 0.0060598

89.847 4.4924 0.211 0.01055 0.99175 0.0058257

103.41 5.1705 0.211 0.01055 0.99543 0.0060966

116.95 5.8475 0.211 0.01055 0.99512 0.0048106

etc....

3 Dataloader

The data loader uses the data file and parses it for use in Sasview (plotting
only for now) and loading into BUMPS (for data fitting). Future changes to
the Sasview source code should have minimal or no impact on the code of the
dataloader.

One new file was created in the Sasview source code to load in data:
sesans reader.py (location: C://Users/[User name]/sasview-code/src/sas/dataloader/readers/).
The code for this file has been added to this document in Appendix 7
3 existing files of the source code were modified:
data info.py (location: C://Users/[User name]/sasview-code/src/sas/dataloader/):

added the SESANSData1D class to handle SESANS data as opposed to Data1D
or Data2D for SANS/SAXS data. Added the plottable sesans1D class to handle
SESANS plots.

associations.py (location: C://Users/[User name]/sasview-code/src/sas/dataloader/readers/):
added sesans reader to the registry to allow use in Sasview.

defaults.json (location: C://Users/[User name]/sasview-code/src/sas/dataloader/readers/):
added default file extension .ses to allow automatic detection of SESANS data
files; this is not yet working as intended.

3



4 Wrapper from SAS model to SESANS in ab-
solute units

The conversion from SANS into SESANS in absolute units is a simple Hankel
transformation when all the small-angle scattered neutrons are detected. First
we calculate the Hankel transform including the absolute intensities by

G̃(δ) = 2π

∫ ∞
0

J0(Qδ)
dΣ

dΩ
(Q)QdQ, (3)

in which J0 is the zeroth order Bessel function, δ the spin-echo length, Q the
wave vector transfer and dΣ

dΩ (Q) the scattering cross section in absolute units.
This is a 1-dimensional integral, which can be rather fast. In the numerical
calculation we integrate from Qmin = 0.1 × 2π/Rmax in which Rmax will be
model dependent. We determined the factor 0.1 by varying its value until the
value of the integral was stable. This happened at a value of 0.3. The have a
safety margin of a factor of three we have choosen the value 0.1. For the solid
sphere we took 3 times the radius for Rmax. The real integration is performed to
Qmax which is an instrumental parameter that is read in from the measurement
file. From 3 we can calculate the polarisation that we measure in a SESANS
experiment:

P (δ) = e
t( λ

2π )
2
(
G̃(δ)−G̃(0)

)
, (4)

in which t is the thickness of the sample and λ is the wavelength of the neutrons.
For collimation by a supermirror analyser the Qmax will be fixed.
2 new files were created for fitting the SESANS data:
The file containing the fit model and parameter boundaries to be used in the

fitting, sesansfit.py (location: C://Users/[User name]/sasmodels/example/)
The file containing the Hankel transform, sesans.py (location: C://Users/[User

name]/sasmodels/sasmodels/)

5 Combination of dataloader with wrapper to
fit in command line with bumps

Install the sasview and sasmodels source code (description in Section 6 Make
sure you have a Git Bash prompt open and that your path is in the sasmodels
folder.

Now it’s time to use BUMPS for SESANS fitting: Place the .ses (or .sesans)
file that you wish to fit into the ’sasmodels/example/’ folder and enter the
following into the command-line:

./bumps.sh example/sesansfit.py --preview (for a quick preview of the fit)

(something should appear on your screen if the installation was successful)

4



Figure 1: a window showing a plot of SESANS data in the current version of
Sasview

./bumps.sh example/sesansfit.py --edit (for interactive GUI mode).

./bumps.sh example/sesansfit.py --fit=amoeba --edit (a very good fitting algorithm).

Note that you can also call up a help menu using the -help option, we give
no guarantees that any of the options given by help, other than those listed
above, will work though: BUMPS is still a work in progress. Best of luck with
your SESANS fitting!

6 Appendix 1: Installation Guide

For the moment, Sasview, and with it, the SESANS fitting module can only be
used on Windows operating systems. Firstly, follow the ‘Easy Developer Setup
on Windows Using Anaconda’ on the Sasview wiki (trac.sasview.org/wiki/AnacondaSetup)
with one modification: in step 3, select to install Git, not Subversion. Be sure
to create a Github account if you have none. After completing the installation
of sasview, perform the following steps:

Clone the sasmodels package from github by entering the following into the
command-line:

https://github.com/Sasview/sasmodels.git sasmodels

Download Intel Opencl drivers from: https://software.intel.com/en-us/articles/opencl-
drivers#win64 and install it (this is to make the BUMPS package work).

From http://www.lfd.uci.edu/∼gohlke/pythonlibs/#pyopencl, Download pyopencl-
2015.1-cp27-none-win32.whl Enter the following into the command-line: pip in-
stall [THIS FILE] (make sure to be in the correct directrory, otherwise you need
to enter the entire path to it).

5



Figure 2: a window showing the result of fitting the Hankel transform of the
SANS form factor of a sphere to a SESANS measurement of dilute polystyrene
spheres in deuterium oxide using the BUMPS software. The fitting algorithm
used was the Nelder-Mead Simplex.

For the moment, you will need to perform a small hack of Anaconda. You
need to modify [Anaconda directory]/Lib/site-packages/bumps/gui/fit thread.py,
line 153: Change line to If False to turn off multi-core support (There is no
multi-core support in the current implementation)

In Git Bash (Unix prompt from Git, comes with the Git installation) ,
navigate to sasmodels folder (should be C:/Users/[User name]/sasmodels.

Create file bumps.sh in the sasmodels main dir (easiest method is to open
compare.sh and adjust the appropriate lines, then save as bumps.sh)) to easily
use BUMPS fitting system (this is simply a text file): Contents are

#!/bin/sh

SASVIEW=$PWD/../sasview-code/src

PYTHONPATH=$PWD:$PWD/../bumps:$PWD/../periodictable:$SASVIEW

export PYOPENCL_CTX PYTHONPATH

echo PYTHONPATH=$PYTHONPATH

set -x

python -m bumps.cli $*

6



7 Appendix 2: Data-loader code

7.1 sesans reader.py

# -*- coding: utf-8 -*-

"""

Created on Fri Feb 20 10:28:18 2015

@author: jhbakker

"""

"""

SESANS reader (based on ASCII reader)

Reader for .ses or .sesans file format

Jurrian Bakker

"""

import numpy

import os

from sas.dataloader.data_info import SESANSData1D

# Check whether we have a converter available

has_converter = True

try:

from sas.data_util.nxsunit import Converter

except:

has_converter = False

_ZERO = 1e-16

class Reader:

"""

Class to load sesans files (6 columns).

"""

## File type

type_name = "SESANS"

## Wildcards

type = ["SESANS files (*.ses)|*.ses",

"SESANS files (*..sesans)|*.sesans"]

## List of allowed extensions

ext = [’.ses’, ’.SES’, ’.sesans’, ’.SESANS’]

## Flag to bypass extension check

allow_all = True

7



def read(self, path):

# print "reader triggered"

"""

Load data file

:param path: file path

:return: SESANSData1D object, or None

:raise RuntimeError: when the file can’t be opened

:raise ValueError: when the length of the data vectors are inconsistent

"""

if os.path.isfile(path):

basename = os.path.basename(path)

_, extension = os.path.splitext(basename)

if self.allow_all or extension.lower() in self.ext:

try:

# Read in binary mode since GRASP frequently has no-ascii

# characters that brakes the open operation

input_f = open(path,’rb’)

except:

raise RuntimeError, "sesans_reader: cannot open %s" % path

buff = input_f.read()

# print buff

lines = buff.splitlines()

x = numpy.zeros(0)

y = numpy.zeros(0)

dy = numpy.zeros(0)

lam = numpy.zeros(0)

dlam = numpy.zeros(0)

dx = numpy.zeros(0)

output = SESANSData1D(x=x, y=y, lam=lam, dy=dy, dx=dx, dlam=dlam)

self.filename = output.filename = basename

data_conv_z = None

data_conv_P = None

if has_converter == True and output.x_unit != ’A’:

data_conv_z = Converter(’nm’)

# Test it

data_conv_z(1.0, output.x_unit)

8



if has_converter == True and output.y_unit != ’ ’:

data_conv_P = Converter(’a.u.’)

# Test it

data_conv_P(1.0, output.y_unit)

paramnames=[]

paramvals=[]

zvals=[]

dzvals=[]

lamvals=[]

dlamvals=[]

Pvals=[]

dPvals=[]

for line in lines:

line=line.strip()

toks = line.split(’\t’)

if len(toks)==2:

paramnames.append(toks[0])

paramvals.append(toks[1])

if len(toks)>5:

zvals.append(toks[0])

dzvals.append(toks[1])

lamvals.append(toks[2])

dlamvals.append(toks[3])

Pvals.append(toks[4])

dPvals.append(toks[5])

else:

continue

x=[]

y=[]

lam=[]

dx=[]

dy=[]

dlam=[]

varheader=[zvals[0],dzvals[0],lamvals[0],dlamvals[0],Pvals[0],dPvals[0]]

valrange=range(len(zvals)-1)

for i in valrange:

x.append(float(zvals[i+1]))

y.append(float(Pvals[i+1]))

lam.append(float(lamvals[i+1]))

dy.append(float(dPvals[i+1]))

dx.append(float(dzvals[i+1]))

dlam.append(float(dlamvals[i+1]))

x,y,lam,dy,dx,dlam = [

numpy.asarray(v, ’double’)

for v in (x,y,lam,dy,dx,dlam)

9



]

input_f.close()

output.x = x #[x != 0]

output.y = y #[x != 0]

output.dy = dy

output.dx = dx

output.lam = lam

output.dlam = dlam

output.xaxis("\\rm{z}", ’A’)

output.yaxis("\\rm{P/P0}", " ")

output.meta_data[’loader’] = self.type_name

output.sample.thickness = float(paramvals[6])

output.sample.name = paramvals[1]

output.sample.ID = paramvals[0]

output.sample.zacceptance=float(paramvals[7])

output.vars=varheader

if len(output.x) < 1:

raise RuntimeError, "%s is empty" % path

return output

else:

raise RuntimeError, "%s is not a file" % path

return None

7.2 sesansfit.py

import numpy as np

from bumps.names import *

from sasmodels import bumps_model as sas

kernel = sas.load_model(’sphere’, dtype=’single’)

if True: # fix when data loader exists

# from sas.dataloader.readers\

from sas.dataloader.loader import Loader

loader=Loader()

data=loader.load(’testsasview1.ses’)

data.x /=10

# data = load_sesans(’mydatfile.pz’)

# sans_data = load_sans(’mysansfile.xml’)

else:

10



SElength = np.linspace(0, 2400, 61) # [A]

data = np.ones_like(SElength)

err_data = np.ones_like(SElength)*0.03

class Sample:

zacceptance = 0.1 # [A^-1]

thickness = 0.2 # [cm]

class SESANSData1D:

#q_zmax = 0.23 # [A^-1]

lam = 0.2 # [nm]

x = SElength

y = data

dy = err_data

sample = Sample()

data = SESANSData1D()

radius = 1000

data.Rmax = 3*radius # [A]

## Sphere parameters

phi = Parameter(0.1, name="phi")

model = sas.BumpsModel(data, kernel,

scale=phi*(1-phi), sld=7.0, solvent_sld=1.0, radius=radius)

phi.range(0.001,0.90)

#model.radius.pmp(40)

model.radius.range(100,10000)

#model.sld.pmp(5)

#model.background

#model.radius_pd=0

#model.radius_pd_n=0

if False: # have sans data

sansmodel = sas.BumpsModel(sans_data, kernel, **model.parameters())

problem = FitProblem([model, sansmodel])

else:

problem = FitProblem(model)

7.3 sesans.py

"""

Conversion of scattering cross section from SANS in absolute

units into SESANS using a Hankel transformation

11



Everything is in units of metres except specified otherwise

Wim Bouwman (w.g.bouwman@tudelft.nl), June 2013

"""

from __future__ import division

import numpy as np

from numpy import pi, exp

from scipy.special import jv as besselj

def make_q(q_zmax, Rmax):

q_min = dq = 0.1 * 2*pi / Rmax

#q_min = 0.00003

return np.arange(q_min, q_zmax, dq)

# TODO: dead code; for now the call to the hankel transform happens in BumpsModel

class SesansCalculator:

def __init__(self, sans_kernel, q_zmax, Rmax, SElength, wavelength, thickness):

self._set_kernel(sans_kernel, q_zmax, Rmax)

self.SElength = SElength

self.wavelength = wavelength

self.thickness = thickness

def _set_kernel(self, sans_kernel, q_zmax, Rmax):

input = sans_kernel.make_input([make_q(q_zmax, Rmax)])

self.sans_calculator = sans_kernel(input)

def __call__(self, pars, pd_pars, cutoff=1e-5):

Iq = self.sans_calculator(pars, pd_pars, cutoff)

P = hankel(self.SElength, self.wavelength, self.thickness, self.q, Iq)

self.Iq = Iq

return P

def hankel(SElength, wavelength, thickness, q, Iq):

"""

Compute the expected SESANS polarization for a given SANS pattern.

Uses the hankel transform followed by the exponential. The values

for zz (or spin echo length, or delta), wavelength and sample thickness

information should come from the dataset. *q* should be chosen such

that the oscillations in *I(q)* are well sampled (e.g., 5*2*pi/d_max).

*SElength* [A] is the set of z points at which to compute the hankel transform

12



*wavelength* [m] is the wavelength of each individual point *zz*

*thickness* [cm] is the sample thickness.

*q* [A^{-1}] is the set of q points at which the model has been computed.

These should be equally spaced.

*I* [cm^{-1}] is the value of the SANS model at *q*

"""

G = np.zeros(len(SElength), ’d’)

for i in range(len(SElength)):

integr = besselj(0,q*SElength[i])*Iq*q

G[i] = np.sum(integr)

dq=(q[1]-q[0])*1e10 # [m^-1] step size in q, needed for integration

G *= dq*1e10*2*pi # integr step, conver q into [m**-1] and 2 pi circle integr

P = exp(thickness*wavelength**2/(4*pi**2)*(G-G[0]))

return P

8 Acknowledgements

We would like to thank everybody of the SASVIEW team for their patient help
with introducing us to this great project. This report is the product of a very
intensive collaboration during the code camp 2015 in Copenhagen.

13


