Provide F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd Teubner-Strey function as a BaseComponent model
Bases: sans.models.BaseComponent.BaseComponent
Class that evaluates the TeubnerStrey model.
F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd
Returns a new object identical to the current object
Evaluate a distribution of q-values.
For 1D, a numpy array is expected as input:
evalDistribution(q)
where q is a numpy array.
qx_prime = [ qx[0], qx[1], qx[2], ....] and qy_prime = [ qy[0], qy[1], qy[2], ....]
Then get q = numpy.sqrt(qx_prime^2+qy_prime^2)
that is a qr in 1D array; q = [q[0], q[1], q[2], ....]
Note : | Due to 2D speed issue, no anisotropic scattering is supported for python models, thus C-models should have
|
---|
The method is then called the following way:
evalDistribution(q) where q is a numpy array.
Parameters: | qdist – ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays |
---|
Return a list of all available parameters for the model
Set the value of a model parameter
Parameters: | name – name of the parameter |
---|
Return a list of all available parameters for the model
Check if a given parameter is fittable or not
Parameters: | par_name – the parameter name to check |
---|
Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (PowerLaw value)
Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: PowerLaw value
Set the value of a model parameter
Parameters: |
|
---|
Calculate the quasi-periodic repeat distance (D/(2*pi)) @return D: quasi-periodic repeat distance
Calculate the correlation length (L) @return L: the correlation distance