This module implements invariant and its related computations.
author: | Gervaise B. Alina/UTK |
---|---|
author: | Mathieu Doucet/UTK |
author: | Jae Cho/UTK |
Extrapolate I(q) distribution using a given model
Fit data for y = ax + b return a and b
Parameters: |
|
---|
Bases: sans.invariant.invariant.Transform
class of type Transform that performs operations related to guinier function
return F(x)= scale* e-((radius*x)**2/3)
Returns the error on I(q) for the given array of q-values
Parameters: | x – array of q-values |
---|
assign new value to the scale and the radius
Goes through the data points and returns a list of boolean values to indicate whether each points is allowed by the model or not.
Parameters: | data – Data1D object |
---|
Linearize data so that a linear fit can be performed. Filter out the data that can’t be transformed.
Parameters: | data – LoadData1D instance |
---|
Transform the input q-value for linearization
Parameters: | value – q-value |
---|---|
Returns: | q*q |
Bases: object
Compute invariant if data is given. Can provide volume fraction and surface area if the user provides Porod constant and contrast values.
Precondition : | the user must send a data of type DataLoader.Data1D the user provide background and scale values. |
---|---|
Note : | Some computations depends on each others. |
Returns: | self._data |
---|
Returns the extrapolated data used for the high-Q invariant calculation. By default, the distribution will cover the data points used for the extrapolation. The number of overlap points is a parameter (npts_in). By default, the maximum q-value of the distribution will be Q_MAXIMUM, the maximum q-value used when extrapolating for the purpose of the invariant calculation.
Parameters: |
|
---|
Returns the extrapolated data used for the loew-Q invariant calculation. By default, the distribution will cover the data points used for the extrapolation. The number of overlap points is a parameter (npts_in). By default, the maximum q-value of the distribution will be the minimum q-value used when extrapolating for the purpose of the invariant calculation.
Parameters: |
|
---|
Returns: | the fitted power for power law function for a given extrapolation range |
---|
Compute the invariant of the local copy of data.
Parameters: | extrapolation – string to apply optional extrapolation |
---|---|
Return q_star: | invariant of the data within data’s q range |
Warning : | When using setting data to Data1D , the user is responsible of checking that the scale and the background are properly apply to the data |
Compute the invariant for extrapolated data at high q range.
Return q_star: | the invariant for data extrapolated at high q. |
---|
Compute the invariant for extrapolated data at low q range.
Return q_star: | the invariant for data extrapolated at low q. |
---|
Compute the invariant uncertainty. This uncertainty computation depends on whether or not the data is smeared.
Parameters: | extrapolation – string to apply optional extrapolation |
---|---|
Returns: | invariant, the invariant uncertainty |
Compute the specific surface from the data.
Implementation:
V = self.get_volume_fraction(contrast, extrapolation)
Compute the surface given by:
surface = (2*pi *V(1- V)*porod_const)/ q_star
Parameters: |
|
---|---|
Returns: | specific surface |
Compute uncertainty of the surface value as well as the surface value. The uncertainty is given as follow:
dS = porod_const *2*pi[( dV -2*V*dV)/q_star
+ dq_star(v-v**2)
q_star: the invariant value
dq_star: the invariant uncertainty
V: the volume fraction value
dV: the volume uncertainty
Parameters: |
|
---|---|
Return S, dS: | the surface, with its uncertainty |
Compute volume fraction is deduced as follow:
q_star = 2*(pi*contrast)**2* volume( 1- volume)
for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2)
we get 2 values of volume:
with 1 - 4 * k >= 0
volume1 = (1- sqrt(1- 4*k))/2
volume2 = (1+ sqrt(1- 4*k))/2
q_star: the invariant value included extrapolation is applied
unit 1/A^(3)*1/cm
q_star = self.get_qstar()
the result returned will be 0 <= volume <= 1
Parameters: |
|
---|---|
Returns: | volume fraction |
Note : | volume fraction must have no unit |
Compute uncertainty on volume value as well as the volume fraction This uncertainty is given by the following equation:
dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star))
for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2)
q_star: the invariant value including extrapolated value if existing
dq_star: the invariant uncertainty
dV: the volume uncertainty
The uncertainty will be set to -1 if it can’t be computed.
Parameters: |
|
---|---|
Returns: | V, dV = volume fraction, error on volume fraction |
Set the extrapolation parameters for the high or low Q-range. Note that this does not turn extrapolation on or off.
Parameters: |
|
---|
Bases: sans.invariant.invariant.Transform
class of type transform that perform operation related to power_law function
given a scale and a radius transform x, y using a power_law function
Returns the error on I(q) for the given array of q-values :param x: array of q-values
Assign new value to the scale and the power
Goes through the data points and returns a list of boolean values to indicate whether each points is allowed by the model or not.
Parameters: | data – Data1D object |
---|
Linearize data so that a linear fit can be performed. Filter out the data that can’t be transformed.
Parameters: | data – LoadData1D instance |
---|
Transform the input q-value for linearization
Parameters: | value – q-value |
---|---|
Returns: | log(q) |
Bases: object
Define interface that need to compute a function or an inverse function given some x, y
Returns an array f(x) values where f is the Transform function.
Returns an array of I(q) errors
set private member
Goes through the data points and returns a list of boolean values to indicate whether each points is allowed by the model or not.
Parameters: | data – Data1D object |
---|
Linearize data so that a linear fit can be performed. Filter out the data that can’t be transformed.
Parameters: | data – LoadData1D instance |
---|
Transform the input q-value for linearization