############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY [INCLUDE_FILE] AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import [CPYTHONCLASS] def create_[PYTHONCLASS](): """ Create a model instance """ obj = [PYTHONCLASS]() # [CPYTHONCLASS].__init__(obj) is called by # the [PYTHONCLASS] constructor return obj class [PYTHONCLASS]([CPYTHONCLASS], BaseComponent): """ Class that evaluates a [PYTHONCLASS] model. This file was auto-generated from [INCLUDE_FILE]. Refer to that file and the structure it contains for details of the model. [DEFAULT_LIST] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply([CPYTHONCLASS].__init__, (self,)) [CALL_CPYTHON_INIT] ## Name of the model self.name = "[PYTHONCLASS]" ## Model description self.description = """ [DESCRIPTION] """ [PAR_DETAILS] ## fittable parameters self.fixed = [FIXED] ## non-fittable parameters self.non_fittable = [NON_FITTABLE_PARAMS] ## parameters with orientation self.orientation_params = [ORIENTATION_PARAMS] self.category = [CATEGORY] self.multiplicity_info = [MULTIPLICITY_INFO] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_[PYTHONCLASS], tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone([PYTHONCLASS]()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return [CPYTHONCLASS].run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return [CPYTHONCLASS].runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return [CPYTHONCLASS].evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return [CPYTHONCLASS].calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return [CPYTHONCLASS].calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return [CPYTHONCLASS].set_dispersion(self, parameter, dispersion.cdisp) # End of file