Changeset eb69cce in sasmodels for sasmodels/models/stickyhardsphere.py


Ignore:
Timestamp:
Nov 30, 2015 9:18:41 PM (8 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
d18f8a8
Parents:
d138d43
Message:

make model docs more consistent; build pdf docs

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/stickyhardsphere.py

    r3e428ec reb69cce  
    44with a narrow attractive well. A perturbative solution of the Percus-Yevick 
    55closure is used. The strength of the attractive well is described in terms 
    6 of "stickiness" as defined below. The returned value is a dimensionless 
    7 structure factor, *S(q)*. 
     6of "stickiness" as defined below. 
    87 
    9 The perturb (perturbation parameter), |epsilon|, should be held between 0.01 
     8The perturb (perturbation parameter), $\epsilon$, should be held between 0.01 
    109and 0.1. It is best to hold the perturbation parameter fixed and let 
    1110the "stickiness" vary to adjust the interaction strength. The stickiness, 
    12 |tau|, is defined in the equation below and is a function of both the 
    13 perturbation parameter and the interaction strength. |tau| and |epsilon| 
    14 are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the 
    15 width of the square well, |bigdelta| (same units as *R*), and the depth of 
    16 the well, *Uo*, in units of kT. From the definition, it is clear that 
    17 smaller |tau| means stronger attraction. 
     11$\tau$, is defined in the equation below and is a function of both the 
     12perturbation parameter and the interaction strength. $\tau$ and $\epsilon$ 
     13are defined in terms of the hard sphere diameter $(\sigma = 2 R)$, the 
     14width of the square well, $\Delta$ (same units as $R$\ ), and the depth of 
     15the well, $U_o$, in units of $kT$. From the definition, it is clear that 
     16smaller $\tau$ means stronger attraction. 
    1817 
    19 .. image:: img/stickyhardsphere_228.PNG 
     18.. math:: 
     19 
     20    %\begin{align*} % isn't working with pdflatex 
     21    \begin{array}{rl} 
     22    \tau     &= \frac{1}{12\epsilon} \exp(u_o / kT) \\ 
     23    \epsilon &= \Delta / (\sigma + \Delta) \\ 
     24    \end{array} 
    2025 
    2126where the interaction potential is 
    2227 
    23 .. image:: img/stickyhardsphere_229.PNG 
     28.. math:: 
     29 
     30    U(r) = \begin{cases} 
     31        \infty & r < \sigma \\ 
     32        -U_o   & \sigma \leq r \leq \sigma + \Delta \\ 
     33        0      & r > \sigma + \Delta 
     34        \end{cases} 
    2435 
    2536The Percus-Yevick (PY) closure was used for this calculation, and is an 
     
    2839good agreement. 
    2940 
    30 The true particle volume fraction, |phi|, is not equal to *h*, which appears 
     41The true particle volume fraction, $\phi$, is not equal to $h$, which appears 
    3142in most of the reference. The two are related in equation (24) of the 
    3243reference. The reference also describes the relationship between this 
     
    3445sphere) model by Baxter. 
    3546 
    36 NB: The calculation can go haywire for certain combinations of the input 
     47**NB**: The calculation can go haywire for certain combinations of the input 
    3748parameters, producing unphysical solutions - in this case errors are 
    38 reported to the command window and the *S(q)* is set to -1 (so it will 
     49reported to the command window and the $S(q)$ is set to -1 (so it will 
    3950disappear on a log-log plot). Use tight bounds to keep the parameters to 
    4051values that you know are physical (test them) and keep nudging them until 
     
    4253 
    4354In sasview the effective radius will be calculated from the parameters 
    44 used in the form factor P(Q) that this S(Q) is combined with. 
     55used in the form factor $P(q)$ that this $S(q)$ is combined with. 
    4556 
    46 For 2D data: The 2D scattering intensity is calculated in the same way 
    47 as 1D, where the *q* vector is defined as 
     57For 2D data the scattering intensity is calculated in the same way 
     58as 1D, where the $q$ vector is defined as 
    4859 
    4960.. math:: 
    5061 
    51     Q = \sqrt{Q_x^2 + Q_y^2} 
     62    q = \sqrt{q_x^2 + q_y^2} 
    5263 
    53 ==============  ========  ============= 
    54 Parameter name  Units     Default value 
    55 ==============  ========  ============= 
    56 effect_radius   |Ang|     50 
    57 perturb         None      0.05 
    58 volfraction     None      0.1 
    59 stickiness      K         0.2 
    60 ==============  ========  ============= 
     64.. figure:: img/stickyhardsphere_1d.jpg 
    6165 
    62 .. image:: img/stickyhardsphere_230.jpg 
     66    1D plot using the default values (in linear scale). 
    6367 
    64 *Figure. 1D plot using the default values (in linear scale).* 
    65  
    66 REFERENCE 
     68References 
     69---------- 
    6770 
    6871S V G Menon, C Manohar, and K S Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190 
Note: See TracChangeset for help on using the changeset viewer.