Changeset d138d43 in sasmodels for sasmodels/models/fcc.py


Ignore:
Timestamp:
Nov 30, 2015 12:24:28 PM (8 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
eb69cce
Parents:
1ec7efa
Message:

remove documentation build errors

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/fcc.py

    r3e428ec rd138d43  
    99a Gaussian distribution. 
    1010 
    11 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 
    12  
    1311Definition 
    1412---------- 
    1513 
    16 The scattering intensity *I(q)* is calculated as 
     14The scattering intensity $I(q)$ is calculated as 
    1715 
    18 .. image:: img/image158.jpg 
     16.. math:: 
    1917 
    20 where *scale* is the volume fraction of spheres, *Vp* is the volume of 
     18    I(q) = \frac{\text{scale}}{V_p} P(q) Z(q) 
     19 
     20where *scale* is the volume fraction of spheres, $V_p$ is the volume of 
    2121the primary particle, *V(lattice)* is a volume correction for the crystal 
    22 structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* 
     22structure, $P(q)$ is the form factor of the sphere (normalized), and $Z(q)$ 
    2323is the paracrystalline structure factor for a face-centered cubic structure. 
    2424 
    25 Equation (1) of the 1990 reference is used to calculate *Z(q)*, using 
    26 equations (23)-(25) from the 1987 paper for *Z1*\ , *Z2*\ , and *Z3*\ . 
     25Equation (1) of the 1990 reference is used to calculate $Z(q)$, using 
     26equations (23)-(25) from the 1987 paper for $Z1$, $Z2$, and $Z3$. 
    2727 
    2828The lattice correction (the occupied volume of the lattice) for a 
    2929face-centered cubic structure of particles of radius *R* and nearest 
    30 neighbor separation *D* is 
     30neighbor separation $D$ is 
    3131 
    32 .. image:: img/image159.jpg 
     32.. math:: 
     33 
     34   V_\text{lattice} = \frac{16\pi}{3}\frac{R^3}{\left(D\sqrt{2}\right)^3} 
    3335 
    3436The distortion factor (one standard deviation) of the paracrystal is 
    35 included in the calculation of *Z(q)* 
     37included in the calculation of $Z(q)$ 
    3638 
    37 .. image:: img/image160.jpg 
     39.. math:: 
    3840 
    39 where *g* is a fractional distortion based on the nearest neighbor distance. 
     41    \Delta a = gD 
    4042 
    41 The face-centered cubic lattice is 
     43where $g$ is a fractional distortion based on the nearest neighbor distance. 
    4244 
    43 .. image:: img/image161.jpg 
     45.. figure:: img/fcc_lattice.jpg 
     46 
     47    Face-centered cubic lattice. 
    4448 
    4549For a crystal, diffraction peaks appear at reduced q-values given by 
    4650 
    47 .. image:: img/image162.jpg 
     51.. math:: 
    4852 
    49 where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all 
    50 even are allowed and reflections where *h*\ , *k*\ , *l* are mixed odd/even 
     53    \frac{qD}{2\pi} = \sqrt{h^2 + k^2 + l^2} 
     54 
     55where for a face-centered cubic lattice $h, k , l$ all odd or all 
     56even are allowed and reflections where $h, k, l$ are mixed odd/even 
    5157are forbidden. Thus the peak positions correspond to (just the first 5) 
    5258 
    53 .. image:: img/image163.jpg 
     59.. math:: 
    5460 
    55 **NB: The calculation of** *Z(q)* **is a double numerical integral that 
    56 must be carried out with a high density of** **points to properly capture 
    57 the sharp peaks of the paracrystalline scattering.** So be warned that the 
     61    \begin{array}{cccccc} 
     62    q/q_0 & 1 & \sqrt{4/3} & \sqrt{8/3} & \sqrt{11/3} & \sqrt{4} \\ 
     63    \text{Indices} & (111)  & (200) & (220) & (311) & (222) 
     64    \end{array} 
     65 
     66**NB**: The calculation of $Z(q)$ is a double numerical integral that 
     67must be carried out with a high density of points to properly capture 
     68the sharp peaks of the paracrystalline scattering. So be warned that the 
    5869calculation is SLOW. Go get some coffee. Fitting of any experimental data 
    5970must be resolution smeared for any meaningful fit. This makes a triple 
     
    6374*qmax* = 0.1 |Ang^-1| and the above default values. 
    6475 
    65 .. image:: img/image164.jpg 
     76.. figure:: img/fcc_1d.jpg 
    6677 
    67 *Figure. 1D plot in the linear scale using the default values (w/200 data point).* 
     78    1D plot in the linear scale using the default values (w/200 data point). 
    6879 
    6980The 2D (Anisotropic model) is based on the reference below where *I(q)* is 
     
    72832D model computation. 
    7384 
    74 .. image:: img/image165.gif 
     85.. figure:: img/crystal_orientation.gif 
    7586 
    76 .. image:: img/image166.jpg 
     87    Orientation of the crystal with respect to the scattering plane. 
    7788 
    78 *Figure. 2D plot using the default values (w/200X200 pixels).* 
     89.. figure:: img/fcc_2d.jpg 
    7990 
    80 REFERENCE 
     91    2D plot using the default values (w/200X200 pixels). 
     92 
     93Reference 
     94--------- 
    8195 
    8296Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
Note: See TracChangeset for help on using the changeset viewer.