Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/core_shell_parallelepiped.py

    r393facf r1f159bd  
    55Calculates the form factor for a rectangular solid with a core-shell structure. 
    66The thickness and the scattering length density of the shell or 
    7 "rim" can be different on each (pair) of faces. 
    8  
     7"rim" can be different on each (pair) of faces. However at this time 
     8the 1D calculation does **NOT** actually calculate a c face rim despite the presence of 
     9the parameter. Some other aspects of the 1D calculation may be wrong. 
     10 
     11.. note:: 
     12   This model was originally ported from NIST IGOR macros. However, it is not 
     13   yet fully understood by the SasView developers and is currently under review. 
    914 
    1015The form factor is normalized by the particle volume $V$ such that 
     
    3641    V = ABC + 2t_ABC + 2t_BAC + 2t_CAB 
    3742 
    38 **meaning that there are "gaps" at the corners of the solid.** 
     43**meaning that there are "gaps" at the corners of the solid.**  Again note that 
     44$t_C = 0$ currently. 
    3945 
    4046The intensity calculated follows the :ref:`parallelepiped` model, with the 
    4147core-shell intensity being calculated as the square of the sum of the 
    42 amplitudes of the core and the slabs on the edges. 
    43  
    44 the scattering amplitude is computed for a particular orientation of the core-shell 
    45 parallelepiped with respect to the scattering vector and then averaged over all 
    46 possible orientations, where $\alpha$ is the angle between the $z$ axis and the longest axis $C$ 
    47 of the parallelepiped, $\beta$ is the angle between projection of the particle in the $xy$ detector plane and the $y$ axis. 
     48amplitudes of the core and shell, in the same manner as a core-shell model. 
    4849 
    4950.. math:: 
    50     \begin{align*} 
    51     F(Q)&=A B C (\rho_\text{core}-\rho_\text{solvent})  S(A \sin\alpha \sin\beta)S(B \sin\alpha \cos\beta)S(C \cos\alpha) \\ 
    52     &+ 2t_A B C (\rho_\text{A}-\rho_\text{solvent})  \left[S((A+t_A) \sin\alpha \sin\beta)-S(A \sin\alpha \sin\beta)\right] S(B \sin\alpha \cos\beta) S(C \cos\alpha)\\ 
    53     &+ 2 A t_B C (\rho_\text{B}-\rho_\text{solvent})  S(A \sin\alpha \sin\beta) \left[S((B+t_B) \sin\alpha \cos\beta)-S(B \sin\alpha \cos\beta)\right] S(C \cos\alpha)\\ 
    54     &+ 2 A B t_C (\rho_\text{C}-\rho_\text{solvent}) S(A \sin\alpha \sin\beta) S(B \sin\alpha \cos\beta) \left[S((C+t_C) \cos\alpha)-S(C \cos\alpha)\right] 
    55     \end{align*} 
    56  
    57 with 
    58  
    59 .. math:: 
    60  
    61     S(x) = \frac{\sin \tfrac{1}{2}Q x}{\tfrac{1}{2}Q x} 
    62  
    63 where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$ are 
    64 the scattering length of the parallelepiped core, and the rectangular slabs of 
    65 thickness $t_A$, $t_B$ and $t_C$, respectively. 
    66 $\rho_\text{solvent}$ is the scattering length of the solvent. 
     51 
     52    F_{a}(Q,\alpha,\beta)= 
     53    \left[\frac{\sin(\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha \sin\beta)}{\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha\sin\beta} 
     54    - \frac{\sin(\tfrac{1}{2}QL_A\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_A\sin\alpha \sin\beta} \right] 
     55    \left[\frac{\sin(\tfrac{1}{2}QL_B\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_B\sin\alpha \sin\beta} \right] 
     56    \left[\frac{\sin(\tfrac{1}{2}QL_C\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_C\sin\alpha \sin\beta} \right] 
     57 
     58.. note:: 
     59 
     60    Why does t_B not appear in the above equation? 
     61    For the calculation of the form factor to be valid, the sides of the solid 
     62    MUST (perhaps not any more?) be chosen such that** $A < B < C$. 
     63    If this inequality is not satisfied, the model will not report an error, 
     64    but the calculation will not be correct and thus the result wrong. 
    6765 
    6866FITTING NOTES 
     
    7573known values, or you will certainly end up at a solution that is unphysical. 
    7674 
     75Constraints must be applied during fitting to ensure that the inequality 
     76$A < B < C$ is not violated. The calculation will not report an error, 
     77but the results will not be correct. 
     78 
    7779The returned value is in units of |cm^-1|, on absolute scale. 
    7880 
     
    8991$\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector. 
    9092 
    91 For 2d, constraints must be applied during fitting to ensure that the inequality 
    92 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 
    93 but the results may be not correct. 
    94  
    9593.. figure:: img/parallelepiped_angle_definition.png 
    9694 
    9795    Definition of the angles for oriented core-shell parallelepipeds. 
    9896    Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 
    99     rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the parallelepiped. 
     97    rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the cylinder. 
    10098    The neutron or X-ray beam is along the $z$ axis. 
    10199 
     
    111109    Equations (1), (13-14). (in German) 
    112110.. [#] D Singh (2009). *Small angle scattering studies of self assembly in 
    113    lipid mixtures*, Johns Hopkins University Thesis (2009) 223-225. `Available 
     111   lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available 
    114112   from Proquest <http://search.proquest.com/docview/304915826?accountid 
    115113   =26379>`_ 
     
    221219         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0853299803222]], 
    222220        ] 
     221del tests  # TODO: fix the tests 
    223222del qx, qy  # not necessary to delete, but cleaner 
Note: See TracChangeset for help on using the changeset viewer.