Ignore:
Timestamp:
Sep 3, 2014 3:16:10 AM (10 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
1c7ffdc
Parents:
87985ca
Message:

build docs for models

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/triaxial_ellipsoid.py

    r5d4777d r19dcb933  
    77.. math:: 
    88 
    9     P(q) = \text{scale} V \left< f^2(q) \right> + \text{background} 
     9    P(Q) = \text{scale} V \left< F^2(Q) \right> + \text{background} 
    1010 
    1111where the volume $V = 4/3 \pi R_a R_b R_c$, and the averaging 
    1212$\left< \cdots \right>$ is applied over all orientations for 1D. 
    1313 
    14 .. figure:: img/image128.JPG 
     14.. figure:: img/triaxial_ellipsoid_geometry.jpg 
    1515 
    1616    Ellipsoid schematic. 
     
    2525.. math:: 
    2626 
    27     P(q) = \frac{\text{scale}}{V}\int_0^1\int_0^1 \ 
    28         \Phi^2(qR_a^2\cos^2( \pi x/2) + qR_b^2\sin^2(\pi y/2)(1-y^2) + c^2y^2) \ 
     27    P(Q) = \frac{\text{scale}}{V}\int_0^1\int_0^1 
     28        \Phi^2(QR_a^2\cos^2( \pi x/2) + QR_b^2\sin^2(\pi y/2)(1-y^2) + c^2y^2) 
    2929        dx dy 
    3030 
     
    3838we define the axis of the cylinder using the angles $\theta$, $\phi$ 
    3939and $\psi$. These angles are defined on 
    40 Figure :num:`figure #triaxial-ellipsoid-angles`. 
     40:num:`figure #triaxial-ellipsoid-angles`. 
    4141The angle $\psi$ is the rotational angle around its own $c$ axis 
    42 against the $q$ plane. For example, $\psi = 0$ when the 
     42against the $Q$ plane. For example, $\psi = 0$ when the 
    4343$a$ axis is parallel to the $x$ axis of the detector. 
    4444 
    4545.. _triaxial-ellipsoid-angles: 
    4646 
    47 .. figure:: img/image132.JPG 
     47.. figure:: img/triaxial_ellipsoid_angles.jpg 
    4848 
    4949    The angles for oriented ellipsoid. 
    5050 
    51 The radius-of-gyration for this system is  $Rg^2 = (R_a R_b R_c)^2/5$. 
     51The radius-of-gyration for this system is  $R_g^2 = (R_a R_b R_c)^2/5$. 
    5252 
    5353The contrast is defined as SLD(ellipsoid) - SLD(solvent).  In the 
     
    5858calculated based on the polar radius $R_p = R_c$ and equatorial 
    5959radius $R_e = \sqrt{R_a R_b}$, and used as the effective radius for 
    60 $S(Q)$ when $P(Q) \dot S(Q)$ is applied. 
     60$S(Q)$ when $P(Q) \cdot S(Q)$ is applied. 
    6161 
    62 .. figure:: img/image130.JPG 
     62.. figure:: img/triaxial_ellipsoid_1d.jpg 
    6363 
    6464    1D plot using the default values (w/1000 data point). 
     
    70701D calculation to the angular average of the output of 2D calculation 
    7171over all possible angles. 
    72 Figure :num:`figure #triaxial-ellipsoid-compare` shows the comparison where 
     72:num:`Figure #triaxial-ellipsoid-comparison` shows the comparison where 
    7373the solid dot refers to averaged 2D while the line represents the 
    7474result of 1D calculation (for 2D averaging, 76, 180, and 76 points 
    7575are taken for the angles of $\theta$, $\phi$, and $\psi$ respectively). 
    7676 
    77 .. _triaxial-ellipsoid-compare: 
     77.. _triaxial-ellipsoid-comparison: 
    7878 
    79 .. figure:: img/image131.GIF 
     79.. figure:: img/triaxial_ellipsoid_comparison.png 
    8080 
    8181    Comparison between 1D and averaged 2D. 
Note: See TracChangeset for help on using the changeset viewer.