ScipyFitting module contains FitArrange , ScipyFit, Parameter classes.All listed classes work together to perform a simple fit with scipy optimizer.
Bases: sans.fit.AbstractFitEngine.FitEngine
ScipyFit performs the Fit.This class can be used as follow: #Do the fit SCIPY create an engine: engine = ScipyFit() Use data must be of type plottable Use a sans model
Add data with a dictionnary of FitArrangeDict where Uid is a key and data is saved in FitArrange object. engine.set_data(data,Uid)
Set model parameter “M1”= model.name add {model.parameter.name:value}.
| Note : | Set_param() if used must always preceded set_model() for the fit to be performed.In case of Scipyfit set_param is called in fit () automatically. |
|---|
engine.set_param( model,”M1”, {‘A’:2,’B’:4})
Add model with a dictionnary of FitArrangeDict{} where Uid is a key and model is save in FitArrange object. engine.set_model(model,Uid)
engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax)
| Parameters: | id – id is key in the dictionary containing the model to return |
|---|---|
| Returns: | a model at this id or None if no FitArrange element was created with this id |
return the self.selected value of the fit problem of id
| Parameters: | id – the id of the problem |
|---|
remove fitarrange in id
select a couple of model and data at the id position in dictionary and set in self.selected value to value
| Parameters: | value – the value to allow fitting. can only have the value one or zero |
|---|
Receives plottable, creates a list of data to fit,set data in a FitArrange object and adds that object in a dictionary with key id.
| Parameters: |
|
|---|
set a model on a given in the fit engine.
| Parameters: | model – sans.models type |
|---|
| Parameters: |
|
|---|---|
| Note : | pars must contains only name of existing model’s parameters |