.. mag_help.rst .. This is a port of text from the original SasView html help file to ReSTructured text .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. .. |inlineimage004| image:: sm_image004.png .. |inlineimage005| image:: sm_image005.png .. |inlineimage008| image:: sm_image008.png .. |inlineimage009| image:: sm_image009.png .. |inlineimage010| image:: sm_image010.png .. |inlineimage011| image:: sm_image011.png .. |inlineimage012| image:: sm_image012.png .. |inlineimage018| image:: sm_image018.png .. |inlineimage019| image:: sm_image019.png .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ Polarisation/Magnetic Scattering -------------------------------- Magnetic scattering is implemented in five (2D) models * *sphere* * *core_shell_sphere* * *core_multi_shell* * *cylinder* * *parallelepiped* In general, the scattering length density (SLD, = $\beta$) in each region where the SLD is uniform, is a combination of the nuclear and magnetic SLDs and, for polarised neutrons, also depends on the spin states of the neutrons. For magnetic scattering, only the magnetization component, $M_\perp$, perpendicular to the scattering vector $Q$ contributes to the the magnetic scattering length. .. image:: mag_vector.png The magnetic scattering length density is then .. image:: dm_eq.png where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$ is the Pauli spin. Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-) to the *x'* axis, the possible spin states after the sample are then No spin-flips (+ +) and (- -) Spin-flips (+ -) and (- +) .. image:: M_angles_pic.png If the angles of the $Q$ vector and the spin-axis (*x'*) to the *x*-axis are $\phi$ and $\theta_\text{up}$, respectively, then, depending on the spin state of the neutrons, the scattering length densities, including the nuclear scattering length density ($\beta_N$) are .. image:: sld1.png when there are no spin-flips, and .. image:: sld2.png when there are, and .. image:: mxp.png .. image:: myp.png .. image:: mzp.png .. image:: mqx.png .. image:: mqy.png Here, $M_{0x}$, $M_{0y}$ and $M_{0z}$ are the $x$, $y$ and $z$ components of the magnetization vector given in the laboratory $xyz$ frame given by .. image:: m0x_eq.png .. image:: m0y_eq.png .. image:: m0z_eq.png and the magnetization angles $\theta_M$ and $\phi_M$ are defined in the figure above. The user input parameters are: =========== ================================================================ M0_sld = $D_M M_0$ Up_theta = $\theta_\text{up}$ M_theta = $\theta_M$ M_phi = $\phi_M$ Up_frac_i = (spin up)/(spin up + spin down) neutrons *before* the sample Up_frac_f = (spin up)/(spin up + spin down) neutrons *after* the sample =========== ================================================================ *Note:* The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1. .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ .. note:: This help document was last changed by Steve King, 02May2015