""" Inferface containing information to store data, model, range of data, etc... and retrieve this information. This is an inferface for a fitProblem i.e relationship between data and model. """ ################################################################################ #This software was developed by the University of Tennessee as part of the #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) #project funded by the US National Science Foundation. # #See the license text in license.txt # #copyright 2009, University of Tennessee ################################################################################ import copy from sas.sascalc.fit.qsmearing import smear_selection class FitProblem(object): """ Define the relationship between data and model, including range, weights, etc. """ def __init__(self): """ contains information about data and model to fit """ ## data used for fitting self.fit_data = None self.theory_data = None self.residuals = None # original data: should not be modified self.original_data = None ## the current model self.model = None ## if 1 this fit problem will be selected to fit , if 0 ## it will not be selected for fit self.schedule = 0 ##list containing parameter name and value self.list_param = [] self.list_param2fit = [] ## smear object to smear or not data1D self.smearer_computed = False self.smearer_enable = False self.smearer_computer_value = None ## fitting range self.qmin = None self.qmax = None # fit weight self.weight = None self.result = None self.fit_tab_caption = None self.name_per_page = None def enable_smearing(self, flag=False): """ :param flag: bool.When flag is 1 get the computer smear value. When flag is 0 ignore smear value. """ self.smearer_enable = flag def set_smearer(self, smearer): """ save reference of smear object on fitdata :param smear: smear object from DataLoader """ self.smearer_computer_value = smearer def get_smearer(self): """ return smear object """ if not self.smearer_enable: return None if not self.smearer_computed: #smeari_selection should be call only once per fitproblem self.smearer_computer_value = smear_selection(self.fit_data, self.model) self.smearer_computed = True return self.smearer_computer_value def save_model_name(self, name): """ """ self.name_per_page = name def get_name(self): """ """ return self.name_per_page def set_model(self, model): """ associates each model with its new created name :param model: model selected :param name: name created for model """ self.model = model self.smearer_computer_value = smear_selection(self.fit_data, self.model) self.smearer_computed = True def get_model(self): """ :return: saved model """ return self.model def set_residuals(self, residuals): """ save a copy of residual :param data: data selected """ self.residuals = residuals def get_residuals(self): """ :return: residuals """ return self.residuals def set_theory_data(self, data): """ save a copy of the data select to fit :param data: data selected """ self.theory_data = copy.deepcopy(data) def get_theory_data(self): """ :return: theory generated with the current model and data of this class """ return self.theory_data def set_fit_data(self, data): """ Store data associated with this class :param data: list of data selected """ self.original_data = None self.fit_data = None # original data: should not be modified self.original_data = data # fit data: used for fit and can be modified for convenience self.fit_data = copy.deepcopy(data) self.smearer_computer_value = smear_selection(self.fit_data, self.model) self.smearer_computed = True self.result = None def get_fit_data(self): """ :return: data associate with this class """ return self.fit_data def get_origin_data(self): """ """ return self.original_data def set_weight(self, is2d, flag=None): """ Received flag and compute error on data. :param flag: flag to transform error of data. :param is2d: flag to distinguish 1D to 2D Data """ from sas.sasgui.perspectives.fitting.utils import get_weight # send original data for weighting self.weight = get_weight(data=self.original_data, is2d=is2d, flag=flag) if is2d: self.fit_data.err_data = self.weight else: self.fit_data.dy = self.weight def get_weight(self): """ returns weight array """ return self.weight def set_param2fit(self, list): """ Store param names to fit (checked) :param list: list of the param names """ self.list_param2fit = list def get_param2fit(self): """ return the list param names to fit """ return self.list_param2fit def set_model_param(self, name, value=None): """ Store the name and value of a parameter of this fitproblem's model :param name: name of the given parameter :param value: value of that parameter """ self.list_param.append([name, value]) def get_model_param(self): """ return list of couple of parameter name and value """ return self.list_param def schedule_tofit(self, schedule=0): """ set schedule to true to decide if this fit must be performed """ self.schedule = schedule def get_scheduled(self): """ return true or false if a problem as being schedule for fitting """ return self.schedule def set_range(self, qmin=None, qmax=None): """ set fitting range :param qmin: minimum value to consider for the fit range :param qmax: maximum value to consider for the fit range """ self.qmin = qmin self.qmax = qmax def get_range(self): """ :return: fitting range """ return self.qmin, self.qmax def clear_model_param(self): """ clear constraint info """ self.list_param = [] def set_fit_tab_caption(self, caption): """ """ self.fit_tab_caption = str(caption) def get_fit_tab_caption(self): """ """ return self.fit_tab_caption def set_graph_id(self, id): """ Set graph id (from data_group_id at the time the graph produced) """ self.graph_id = id def get_graph_id(self): """ Get graph_id """ return self.graph_id def set_result(self, result): """ """ self.result = result def get_result(self): """ get result """ return self.result class FitProblemDictionary(dict): """ This module implements a dictionary of fitproblem objects """ def __init__(self): dict.__init__(self) ## the current model self.model = None ## if 1 this fit problem will be selected to fit , if 0 ## it will not be selected for fit self.schedule = 0 ##list containing parameter name and value self.list_param = [] ## fitting range self.qmin = None self.qmax = None self.graph_id = None self._smear_on = False self.scheduled = 0 self.fit_tab_caption = '' self.nbr_residuals_computed = 0 self.batch_inputs = {} self.batch_outputs = {} def enable_smearing(self, flag=False, fid=None): """ :param flag: bool.When flag is 1 get the computer smear value. When flag is 0 ignore smear value. """ self._smear_on = flag if fid is None: for value in self.values(): value.enable_smearing(flag) elif fid in self: self[fid].enable_smearing(flag) def set_smearer(self, smearer, fid=None): """ save reference of smear object on fitdata :param smear: smear object from DataLoader """ if fid is None: for value in self.values(): value.set_smearer(smearer) elif fid in self: self[fid].set_smearer(smearer) def get_smearer(self, fid=None): """ return smear object """ if fid in self: return self[fid].get_smearer() def save_model_name(self, name, fid=None): """ """ if fid is None: for value in self.values(): value.save_model_name(name) elif fid in self: self[fid].save_model_name(name) def get_name(self, fid=None): """ """ result = [] if fid is None: for value in self.values(): result.append(value.get_name()) elif fid in self: result.append(self[fid].get_name()) return result def set_model(self, model, fid=None): """ associates each model with its new created name :param model: model selected :param name: name created for model """ self.model = model if fid is None: for value in self.values(): value.set_model(self.model) elif fid in self: self[fid].set_model(self.model) def get_model(self, fid): """ :return: saved model """ if fid in self: return self[fid].get_model() def set_fit_tab_caption(self, caption): """ store the caption of the page associated with object """ self.fit_tab_caption = caption def get_fit_tab_caption(self): """ Return the caption of the page associated with object """ return self.fit_tab_caption def set_residuals(self, residuals, fid): """ save a copy of residual :param data: data selected """ if fid in self: self[fid].set_residuals(residuals) def get_residuals(self, fid): """ :return: residuals """ if fid in self: return self[fid].get_residuals() def set_theory_data(self, fid, data=None): """ save a copy of the data select to fit :param data: data selected """ if fid in self: self[fid].set_theory_data(data) def get_theory_data(self, fid): """ :return: list of data dList """ if fid in self: return self[fid].get_theory_data() def add_data(self, data): """ Add data to the current dictionary of fitproblem. if data id does not exist create a new fit problem. :note: only data changes in the fit problem """ if data.id not in self: self[data.id] = FitProblem() self[data.id].set_fit_data(data) def set_fit_data(self, data): """ save a copy of the data select to fit :param data: data selected """ self.clear() if data is None: data = [] for d in data: if d is not None: if d.id not in self: self[d.id] = FitProblem() self[d.id].set_fit_data(d) self[d.id].set_model(self.model) self[d.id].set_range(self.qmin, self.qmax) def get_fit_data(self, fid): """ return data for the given fitproblem id :param fid: key representing a fitproblem, usually extract from data id """ if fid in self: return self[fid].get_fit_data() def set_model_param(self, name, value=None, fid=None): """ Store the name and value of a parameter of this fitproblem's model :param name: name of the given parameter :param value: value of that parameter """ if fid is None: for value in self.values(): value.set_model_param(name, value) elif fid in self: self[fid].set_model_param(name, value) def get_model_param(self, fid): """ return list of couple of parameter name and value """ if fid in self: return self[fid].get_model_param() def set_param2fit(self, list): """ Store param names to fit (checked) :param list: list of the param names """ self.list_param2fit = list def get_param2fit(self): """ return the list param names to fit """ return self.list_param2fit def schedule_tofit(self, schedule=0): """ set schedule to true to decide if this fit must be performed """ self.scheduled = schedule for value in self.values(): value.schedule_tofit(schedule) def get_scheduled(self): """ return true or false if a problem as being schedule for fitting """ return self.scheduled def set_range(self, qmin=None, qmax=None, fid=None): """ set fitting range """ self.qmin = qmin self.qmax = qmax if fid is None: for value in self.values(): value.set_range(self.qmin, self.qmax) elif fid in self: self[fid].value.set_range(self.qmin, self.qmax) def get_range(self, fid): """ :return: fitting range """ if fid in self: return self[fid].get_range() def set_weight(self, is2d, flag=None, fid=None): """ fit weight """ if fid is None: for value in self.values(): value.set_weight(flag=flag, is2d=is2d) elif fid in self: self[fid].set_weight(flag=flag, is2d=is2d) def get_weight(self, fid=None): """ return fit weight """ if fid in self: return self[fid].get_weight() def clear_model_param(self, fid=None): """ clear constraint info """ if fid is None: for value in self.values(): value.clear_model_param() elif fid in self: self[fid].clear_model_param() def get_fit_problem(self): """ return fitproblem contained in this dictionary """ return list(self.values()) def set_result(self, result, fid): """ """ if fid in self: self[fid].set_result(result) def set_batch_result(self, batch_inputs, batch_outputs): """ set a list of result """ self.batch_inputs = batch_inputs self.batch_outputs = batch_outputs def get_result(self, fid): """ get result """ if fid in self: return self[fid].get_result() def get_batch_result(self): """ get result """ return self.batch_inputs, self.batch_outputs def set_graph_id(self, id): """ Set graph id (from data_group_id at the time the graph produced) """ self.graph_id = id def get_graph_id(self): """ Get graph_id """ return self.graph_id