source: sasview/src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst @ da456fb

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since da456fb was da456fb, checked in by smk78, 8 years ago

Major updating of the test data documentation. Closes #710

  • Property mode set to 100644
File size: 6.0 KB
RevLine 
[fb7fcec]1.. corfunc_help.rst
2
[da456fb]3.. _Correlation_Function_Analysis:
4
[32c5983]5Correlation Function Analysis
6=============================
[fb7fcec]7
8Description
9-----------
10
[32c5983]11This performs a correlation function analysis of one-dimensional
[fb7fcec]12SANS data, or generates a model-independent volume fraction profile from a
13one-dimensional SANS pattern of an adsorbed layer.
14
15The correlation function analysis is performed in 3 stages:
16
17*  Extrapolation of the scattering curve to :math:`Q = 0` and
18   :math:`Q = \infty`
[41345d7e]19*  Fourier/Hilbert Transform of the extrapolated data to give the correlation
20   function/volume fraction profile
[fb7fcec]21*  Interpretation of the 1D correlation function based on an ideal lamellar
22   morphology
23
24.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
25
26Extrapolation
27-------------
28
29To :math:`Q = 0`
30^^^^^^^^^^^^^^^^
31
32The data are extrapolated to Q = 0 by fitting a Guinier model to the data
33points in the lower Q range.
34The equation used is:
35
36.. math::
[ff11b21]37    I(Q) = e^{A+Bq^2}
[fb7fcec]38
39The Guinier model assumes that the small angle scattering arises from particles
40and that parameter :math:`B` is related to the radius of gyration of those
41particles. This has dubious applicability to polymer systems. However, the
42correlation function is affected by the Guinier back-extrapolation to the
43greatest extent at large values of R and so the back-extrapolation only has a
44small effect on the analysis.
45
46To :math:`Q = \infty`
47^^^^^^^^^^^^^^^^^^^^^
48
49The data are extrapolated to Q = :math:`\infty` by fitting a Porod model to
50the data points in the upper Q range.
51
52The equation used is:
53
54.. math::
[c97d76a]55    I(Q) = Bg + KQ^{-4}e^{-Q^2\sigma^2}
[fb7fcec]56
[c97d76a]57Where :math:`Bg` is the Bonart thermal background, :math:`K` is the Porod
58constant, and :math:`\sigma > 0` describes the electron (or neutron scattering
[fb7fcec]59length) density profile at the interface between crystalline and amorphous
60regions (see figure 1).
61
62.. figure:: fig1.gif
63   :align: center
64
[41345d7e]65   **Figure 1** The value of :math:`\sigma` is a measure of the electron
[fb7fcec]66   density profile at the interface between crystalline and amorphous regions.
67
68Smoothing
69^^^^^^^^^
70
71The extrapolated data set consists of the Guinier back-extrapolation up to the
72highest Q value of the lower Q range, the original scattering data up to the
73highest value in the upper Q range, and the Porod tail-fit beyond this. The
74joins between the original data and the Guinier/Porod fits are smoothed using
[2fe78566]75the algorithm below, to avoid the formation of ripples in the transformed data.
[fb7fcec]76
[2fe78566]77Functions :math:`f(x_i)` and :math:`g(x_i)` where :math:`x_i \in \left\{
78{x_1, x_2, ..., x_n} \right\}`, are smoothed over the range :math:`[a, b]`
79to produce :math:`y(x_i)`, by the following equations:
[fb7fcec]80
81.. math::
82    y(x_i) = h_ig(x_i) + (1-h_i)f(x_i)
83
84where:
85
86.. math::
87    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}}
[41345d7e]88
89Transform
90---------
91
92Fourier
93^^^^^^^
94
[32c5983]95If Fourier is selected for the transform type, the analysis will perform a
[0390040]96discrete cosine transform on the extrapolated data in order to calculate the
[2fe78566]97correlation function. The following algorithm is applied:
[41345d7e]98
99.. math::
100    \Gamma(x_k) = 2 \sum_{n=0}^{N-1} x_n \cos{\left[ \frac{\pi}{N}
101    \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots,
102    N-1, N
103
104Hilbert
105^^^^^^^
[32c5983]106If Hilbert is selected for the transform type, the analysis will perform a
[2fe78566]107Hilbert transform on the extrapolated data in order to calculate the Volume
[41345d7e]108Fraction Profile.
109
110Interpretation
111--------------
112Once the correlation function has been calculated by transforming the
113extrapolated data, it may be interpreted by clicking the "Compute Parameters"
114button. The correlation function is interpreted in terms of an ideal lamellar
115morphology, and structural parameters are obtained as shown in Figure 2 below.
116It should be noted that a small beam size is assumed; no de-smearing is
117performed.
118
119.. figure:: fig2.gif
120   :align: center
121
122   **Figure 2** Interpretation of the correlation function.
123
124The structural parameters obtained are:
125
126*   Long Period :math:`= L_p`
127*   Average Hard Block Thickness :math:`= L_c`
128*   Average Core Thickness :math:`= D_0`
129*   Average Interface Thickness :math:`\text{} = D_{tr}`
130*   Polydispersity :math:`= \Gamma_{\text{min}}/\Gamma_{\text{max}}`
131*   Local Crystallinity :math:`= L_c/L_p`
[0390040]132
133.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
134
135Usage
136-----
[f56770ef]137Upon sending data for correlation function analysis, it will be plotted (minus
138the background value), along with a red bar indicating the lower Q range (used
139for back-extrapolation), and 2 purple bars indicating the upper Q range (used
140for forward-extrapolation) [figure 3]. These bars may be moved my clicking and
141dragging, or by entering the appropriate values in the Q range input boxes.
[0390040]142
143.. figure:: tutorial1.png
144   :align: center
145
146   **Figure 3** A plot of some data showing the Q range bars
147
148Once the Q ranges have been set, click the "Calculate" button next to the
149background input field to calculate the Bonart thermal background level.
150Alternatively, enter your own value into the field. Click the "Extrapolate"
[f56770ef]151button to extrapolate the data and plot the extrapolation in the same figure.
152The values of the parameters used for the Guinier and Porod models will also be
153shown in the "Extrapolation Parameters" section [figure 4]
[0390040]154
155.. figure:: tutorial2.png
156   :align: center
157
158   **Figure 4** A plot showing the extrapolated data and the original data
159
160Then, select which type of transform you would like to perform, using the radio
161buttons:
162
163*   **Fourier** Perform a Fourier Transform to calculate the correlation
164    function of the extrapolated data
165*   **Hilbert** Perform a Hilbert Transform to calculate the volume fraction
166    profile of the extrapolated data
167
168Clicking the transform button will then perform the selected transform and plot
169it in a new figure. If a Fourier Transform was performed, the "Compute
170Parameters" button can also be clicked to calculate values for the output
171parameters [figure 5]
172
173 .. figure:: tutorial3.png
174    :align: center
175
176    **Figure 5** The Fourier Transform (correlation function) of the
177    extrapolated data, and the parameters extracted from it.
Note: See TracBrowser for help on using the repository browser.