source: sasview/src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst @ 490f790

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249unittest-saveload
Last change on this file since 490f790 was 490f790, checked in by smk78, 6 years ago

Tweaks to corfunc_help.rst

  • Property mode set to 100644
File size: 10.9 KB
RevLine 
[fb7fcec]1.. corfunc_help.rst
2
[da456fb]3.. _Correlation_Function_Analysis:
4
[32c5983]5Correlation Function Analysis
6=============================
[fb7fcec]7
8Description
9-----------
10
[ad476d1]11This currently performs correlation function analysis on SAXS/SANS data,
12but in the the future is also planned to generate model-independent volume
13fraction profiles from the SANS from adsorbed polymer/surfactant layers.
14The two types of analyses differ in the mathematical transform that is
15applied to the data (Fourier vs Hilbert). However, both functions are
16returned in *real space*.
[fb7fcec]17
[d78b5cb]18A correlation function may be interpreted in terms of an imaginary rod moving
[ad476d1]19through the structure of the material. Γ(x) is the probability that a rod of
20length x has equal electron/neutron scattering length density at either end.
21Hence a frequently occurring spacing within a structure will manifest itself
22as a peak in Γ(x). *SasView* will return both the one-dimensional ( Γ\ :sub:`1`\ (x) )
23and three-dimensional ( Γ\ :sub:`3`\ (x) ) correlation functions, the difference
24being that the former is only averaged in the plane of the scattering vector.
25
26A volume fraction profile :math:`\Phi`\ (z) describes how the density of polymer
27segments/surfactant molecules varies with distance, z, normal to an (assumed
28locally flat) interface. The form of :math:`\Phi`\ (z) can provide information
29about the arrangement of polymer/surfactant molecules at the interface. The width
30of the profile provides measures of the layer thickness, and the area under
31the profile is related to the amount of material that is adsorbed.
32
33Both analyses are performed in 3 stages:
34
[490f790]35*  Extrapolation of the scattering curve to :math:`q = 0` and toward
36   :math:`q = \infty`
[1404cce]37*  Smoothed merging of the two extrapolations into the original data
38*  Fourier / Hilbert Transform of the smoothed data to give the correlation
[ad476d1]39   function or volume fraction profile, respectively
40*  (Optional) Interpretation of Γ\ :sub:`1`\ (x) assuming the sample conforms
41   to an ideal lamellar morphology
[fb7fcec]42
43.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
44
[ad476d1]45
[fb7fcec]46Extrapolation
47-------------
48
[490f790]49To :math:`q = 0`
[1404cce]50................
[fb7fcec]51
[ad476d1]52The data are extrapolated to q = 0 by fitting a Guinier function to the data
53points in the low-q range.
[1404cce]54
[fb7fcec]55The equation used is:
56
57.. math::
[ad476d1]58    I(q) = A e^{Bq^2}
[fb7fcec]59
[ad476d1]60Where the parameter :math:`B` is related to the effective radius-of-gyration of
61a spherical object having the same small-angle scattering in this region.
62       
63Note that as q tends to zero this function tends to a limiting value and is
64therefore less appropriate for use in systems where the form factor does not
65do likewise. However, because of the transform, the correlation functions are
66most affected by the Guinier back-extrapolation at *large* values of x where
67the impact on any extrapolated parameters will be least significant.
[fb7fcec]68
[490f790]69To :math:`q = \infty`
[1404cce]70.....................
[fb7fcec]71
[ad476d1]72The data are extrapolated towards q = :math:`\infty` by fitting a Porod model to
73the data points in the high-q range and then computing the extrapolation to 100
74times the maximum q value in the experimental dataset. This should be more than
75sufficient to ensure that on transformation any truncation artefacts introduced
76are at such small values of x that they can be safely ignored.
[fb7fcec]77
78The equation used is:
79
80.. math::
[ad476d1]81    I(q) = K q^{-4}e^{-q^2\sigma^2} + Bg
[fb7fcec]82
[ad476d1]83Where :math:`Bg` is the background, :math:`K` is the Porod constant, and :math:`\sigma` (which
84must be > 0) describes the width of the electron/neutron scattering length density
85profile at the interface between the crystalline and amorphous regions as shown below.
[fb7fcec]86
[6aad2e8]87.. figure:: fig1.png
[fb7fcec]88   :align: center
89
[d78b5cb]90
[fb7fcec]91Smoothing
[1404cce]92---------
[fb7fcec]93
[ad476d1]94The extrapolated data set consists of the Guinier back-extrapolation from q ~ 0
95up to the lowest q value in the original data, then the original scattering data,
96and then the Porod tail-fit beyond this. The joins between the original data and
97the Guinier/Porod extrapolations are smoothed using the algorithm below to try
98and avoid the formation of truncation ripples in the transformed data:
[fb7fcec]99
[2fe78566]100Functions :math:`f(x_i)` and :math:`g(x_i)` where :math:`x_i \in \left\{
101{x_1, x_2, ..., x_n} \right\}`, are smoothed over the range :math:`[a, b]`
102to produce :math:`y(x_i)`, by the following equations:
[fb7fcec]103
104.. math::
105    y(x_i) = h_ig(x_i) + (1-h_i)f(x_i)
106
107where:
108
109.. math::
110    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}}
[41345d7e]111
[d78b5cb]112
[ad476d1]113Transformation
114--------------
[41345d7e]115
116Fourier
[1404cce]117.......
[41345d7e]118
[ad476d1]119If "Fourier" is selected for the transform type, *SasView* will perform a
[0390040]120discrete cosine transform on the extrapolated data in order to calculate the
[ad476d1]1211D correlation function as:
[1404cce]122
123.. math::
[ad476d1]124    \Gamma _{1}(x) = \frac{1}{Q^{*}} \int_{0}^{\infty }I(q) q^{2} cos(qx) dq
[1404cce]125
[ad476d1]126where Q\ :sup:`*` is the Scattering (also called Porod) Invariant.
[1404cce]127
128The following algorithm is applied:
[41345d7e]129
130.. math::
131    \Gamma(x_k) = 2 \sum_{n=0}^{N-1} x_n \cos{\left[ \frac{\pi}{N}
[4b4b746]132    \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots,
[41345d7e]133    N-1, N
134
[ad476d1]135The 3D correlation function is calculated as:
[d78b5cb]136
137.. math::
[ad476d1]138    \Gamma _{3}(x) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2}
139    \frac{sin(qx)}{qx} dq
140
141.. note:: It is always advisable to inspect Γ\ :sub:`1`\ (x) and Γ\ :sub:`3`\ (x)
142    for artefacts arising from the extrapolation and transformation processes:
143       
144        - do they tend to zero as x tends to :math:`\infty`?
145        - do they smoothly curve onto the ordinate at x = 0? (if not check the value
146          of :math:`\sigma` is sensible)
[490f790]147        - are there ripples at x values corresponding to (2 :math:`\pi` over) the two
[ad476d1]148          q values at which the extrapolated and experimental data are merged?
[490f790]149        - are there any artefacts at x values corresponding to 2 :math:`\pi` / q\ :sub:`max` in
[ad476d1]150          the experimental data?
151        - and lastly, do the significant features/peaks in the correlation functions
152          actually correspond to anticpated spacings in the sample?!!!
153
154Finally, the program calculates the interface distribution function (IDF) g\ :sub:`1`\ (x) as
155the discrete cosine transform of:
156
157.. math::
158    -q^{4} I(q)
159
[490f790]160The IDF is proportional to the second derivative of Γ\ :sub:`1`\ (x) and represents a
161superposition of thickness distributions from all the contributing lamellae.
[d78b5cb]162
[41345d7e]163Hilbert
[1404cce]164.......
[ad476d1]165       
[1404cce]166If "Hilbert" is selected for the transform type, the analysis will perform a
[2fe78566]167Hilbert transform on the extrapolated data in order to calculate the Volume
[41345d7e]168Fraction Profile.
169
[ad476d1]170.. note:: The Hilbert transform functionality is not yet implemented in SasView.
[1404cce]171
172
[41345d7e]173Interpretation
174--------------
[1404cce]175
176Correlation Function
177....................
178
[ad476d1]179Once the correlation functions have been calculated *SasView* can be asked to
180try and interpret Γ\ :sub:`1`\ (x) in terms of an ideal lamellar morphology
181as shown below.
[41345d7e]182
[6aad2e8]183.. figure:: fig2.png
[41345d7e]184   :align: center
185
[ad476d1]186The structural parameters extracted are:
[41345d7e]187
188*   Long Period :math:`= L_p`
189*   Average Hard Block Thickness :math:`= L_c`
190*   Average Core Thickness :math:`= D_0`
[501712f]191*   Average Interface Thickness :math:`= D_{tr}`
[8cc9048]192*   Polydispersity :math:`= \Gamma_{\mathrm{min}}/\Gamma_{\mathrm{max}}`
[41345d7e]193*   Local Crystallinity :math:`= L_c/L_p`
[0390040]194
[490f790]195.. warning:: If the sample does not possess lamellar morphology then "Compute
196    Parameters" will return garbage!
197       
198
[1404cce]199Volume Fraction Profile
200.......................
201
[ad476d1]202SasView does not provide any automatic interpretation of volume fraction profiles
203in the same way that it does for correlation functions. However, a number of
204structural parameters are obtainable by other means:
[1404cce]205
206*   Surface Coverage :math:`=\theta`
207*   Anchor Separation :math:`= D`
208*   Bound Fraction :math:`= <p>`
209*   Second Moment :math:`= \sigma`
[8cc9048]210*   Maximum Extent :math:`= \delta_{\mathrm{h}}`
[1404cce]211*   Adsorbed Amount :math:`= \Gamma`
212
213.. figure:: profile1.png
214   :align: center
[d78b5cb]215
[1404cce]216.. figure:: profile2.png
217   :align: center
[d78b5cb]218
[ad476d1]219The reader is directed to the references for information on these parameters.
[1404cce]220
[490f790]221
[1404cce]222References
223----------
224
[ad476d1]225Correlation Function
226....................
227
[1404cce]228Strobl, G. R.; Schneider, M. *J. Polym. Sci.* (1980), 18, 1343-1359
229
230Koberstein, J.; Stein R. *J. Polym. Sci. Phys. Ed.* (1983), 21, 2181-2200
231
232Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 247-251
233
234Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 257-261
235
236Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 260-270
237
[ad476d1]238Göschel, U.; Urban, G. *Polymer* (1995), 36, 3633-3639
239
240Stribeck, N. *X-Ray Scattering of Soft Matter*, Springer. Berlin (2007), 138-161
241
[1404cce]242:ref:`FDR` (PDF format)
243
[ad476d1]244Volume Fraction Profile
245.......................
246
247Washington, C.; King, S. M. *J. Phys. Chem.*, (1996), 100, 7603-7609
248
249Cosgrove, T.; King, S. M.; Griffiths, P. C. *Colloid-Polymer Interactions: From Fundamentals to Practice*, Wiley. New York (1999), 193-204
250
251King, S. M.; Griffiths, P. C.; Cosgrove, T. *Applications of Neutron Scattering to Soft Condensed Matter*, Gordon & Breach. Amsterdam (2000), 77-105
252
253King, S.; Griffiths, P.; Hone, J.; Cosgrove, T. *Macromol. Symp.* (2002), 190, 33-42
254
[0390040]255.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
256
[1404cce]257
[0390040]258Usage
259-----
[f56770ef]260Upon sending data for correlation function analysis, it will be plotted (minus
[d78b5cb]261the background value), along with a *red* bar indicating the *upper end of the
[ad476d1]262low-Q range* (used for Guinier back-extrapolation), and 2 *purple* bars indicating
263the range to be used for Porod forward-extrapolation. These bars may be moved by
264grabbing and dragging, or by entering appropriate values in the Q range input boxes.
[0390040]265
266.. figure:: tutorial1.png
267   :align: center
268
[ad476d1]269Once the Q ranges have been set, click the "Calculate Bg" button to determine the
270background level. Alternatively, enter your own value into the box. If the box turns
[490f790]271yellow this indicates that background subtraction has created some negative intensities.
272This may still be fine provided the peak intensity is very much greater than the
273background level. The important point is that the extrapolated dataset must approach
274zero at high-q.
[0390040]275
[ad476d1]276Now click the "Extrapolate" button to extrapolate the data. The graph window will update
277to show the extrapolated data, and the values of the parameters used for the Guinier and
278Porod extrapolations will appear in the "Extrapolation Parameters" section of the SasView
279GUI.
[0390040]280
281.. figure:: tutorial2.png
282   :align: center
283
[1404cce]284Now select which type of transform you would like to perform, using the radio
[0390040]285buttons:
286
[ad476d1]287*   **Fourier**: to perform a Fourier Transform to calculate the correlation
288    functions
289*   **Hilbert**: to perform a Hilbert Transform to calculate the volume fraction
[1404cce]290    profile
291
[ad476d1]292and click the "Transform" button to perform the selected transform and plot
293the results.
[0390040]294
295 .. figure:: tutorial3.png
296    :align: center
297
[ad476d1]298If a Fourier Transform was performed, the "Compute Parameters" button can now be
299clicked to interpret the correlation function as described earlier. The parameters
300will appear in the "Output Parameters" section of the SasView GUI.
301
302 .. figure:: tutorial4.png
303    :align: center
304
[d78b5cb]305
[1404cce]306.. note::
[490f790]307    This help document was last changed by Steve King, 28Sep2017
Note: See TracBrowser for help on using the repository browser.