source: sasview/src/sas/sascalc/pr/invertor.py @ eeea6a3

ESS_GUIESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since eeea6a3 was eeea6a3, checked in by wojciech, 6 years ago

Simulated error handling added to more logical place

  • Property mode set to 100644
File size: 25.9 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
[9a5097c]9import numpy as np
[51f14603]10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
[463e7ffc]21logger = logging.getLogger(__name__)
[c155a16]22
[51f14603]23def help():
24    """
25    Provide general online help text
26    Future work: extend this function to allow topic selection
27    """
[3350ad6]28    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]29    info_txt += "(1980) 13, 168-175.\n\n"
30    info_txt += "P(r) is set to be equal to an expansion of base functions "
31    info_txt += "of the type "
32    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
33    info_txt += "base functions "
34    info_txt += "in the expansion is found by performing a least square fit "
35    info_txt += "with the "
36    info_txt += "following fit function:\n\n"
37    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
38    info_txt += "Reg_term\n\n"
39    info_txt += "where I_meas(q) is the measured scattering intensity and "
40    info_txt += "I_th(q) is "
41    info_txt += "the prediction from the Fourier transform of the P(r) "
42    info_txt += "expansion. "
43    info_txt += "The Reg_term term is a regularization term set to the second"
44    info_txt += " derivative "
45    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
46    info_txt += "a smooth P(r) output.\n\n"
47    info_txt += "The following are user inputs:\n\n"
48    info_txt += "   - Number of terms: the number of base functions in the P(r)"
49    info_txt += " expansion.\n\n"
50    info_txt += "   - Regularization constant: a multiplicative constant "
51    info_txt += "to set the size of "
52    info_txt += "the regularization term.\n\n"
53    info_txt += "   - Maximum distance: the maximum distance between any "
54    info_txt += "two points in the system.\n"
[3350ad6]55
[51f14603]56    return info_txt
[3350ad6]57
[51f14603]58
59class Invertor(Cinvertor):
60    """
61    Invertor class to perform P(r) inversion
[3350ad6]62
[51f14603]63    The problem is solved by posing the problem as  Ax = b,
64    where x is the set of coefficients we are looking for.
[3350ad6]65
[51f14603]66    Npts is the number of points.
[3350ad6]67
[51f14603]68    In the following i refers to the ith base function coefficient.
69    The matrix has its entries j in its first Npts rows set to ::
70
71        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]72
[6701a0b]73    We then choose a number of r-points, n_r, to evaluate the second
[51f14603]74    derivative of P(r) at. This is used as our regularization term.
75    For a vector r of length n_r, the following n_r rows are set to ::
76
77        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
78        evaluated at r[j])
[3350ad6]79
[51f14603]80    The vector b has its first Npts entries set to ::
81
82        b[j] = (I(q) observed for point j)
[3350ad6]83
[51f14603]84    The following n_r entries are set to zero.
[3350ad6]85
[51f14603]86    The result is found by using scipy.linalg.basic.lstsq to invert
87    the matrix and find the coefficients x.
[3350ad6]88
[51f14603]89    Methods inherited from Cinvertor:
90
91    * ``get_peaks(pars)``: returns the number of P(r) peaks
92    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
93    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
94    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
95    """
96    ## Chisqr of the last computation
[3350ad6]97    chi2 = 0
[51f14603]98    ## Time elapsed for last computation
99    elapsed = 0
100    ## Alpha to get the reg term the same size as the signal
101    suggested_alpha = 0
102    ## Last number of base functions used
103    nfunc = 10
104    ## Last output values
105    out = None
106    ## Last errors on output values
107    cov = None
108    ## Background value
109    background = 0
110    ## Information dictionary for application use
111    info = {}
[3350ad6]112
[51f14603]113    def __init__(self):
114        Cinvertor.__init__(self)
[3350ad6]115
[51f14603]116    def __setstate__(self, state):
117        """
118        restore the state of invertor for pickle
119        """
120        (self.__dict__, self.alpha, self.d_max,
121         self.q_min, self.q_max,
122         self.x, self.y,
[cb62bd5]123         self.err, self.est_bck,
[51f14603]124         self.slit_height, self.slit_width) = state
[3350ad6]125
[51f14603]126    def __reduce_ex__(self, proto):
127        """
128        Overwrite the __reduce_ex__
129        """
130
131        state = (self.__dict__,
132                 self.alpha, self.d_max,
133                 self.q_min, self.q_max,
134                 self.x, self.y,
[cb62bd5]135                 self.err, self.est_bck,
[51f14603]136                 self.slit_height, self.slit_width,
[3350ad6]137                )
[51f14603]138        return (Invertor, tuple(), state, None, None)
[3350ad6]139
[51f14603]140    def __setattr__(self, name, value):
141        """
142        Set the value of an attribute.
143        Access the parent class methods for
144        x, y, err, d_max, q_min, q_max and alpha
145        """
[fba204bf]146        if name == 'x':
[51f14603]147            if 0.0 in value:
148                msg = "Invertor: one of your q-values is zero. "
149                msg += "Delete that entry before proceeding"
[574adc7]150                raise ValueError(msg)
[51f14603]151            return self.set_x(value)
152        elif name == 'y':
153            return self.set_y(value)
154        elif name == 'err':
155            value2 = abs(value)
156            return self.set_err(value2)
157        elif name == 'd_max':
[2c60f304]158            if value <= 0.0:
159                msg = "Invertor: d_max must be greater than zero."
160                msg += "Correct that entry before proceeding"
[574adc7]161                raise ValueError(msg)
[51f14603]162            return self.set_dmax(value)
163        elif name == 'q_min':
[235f514]164            if value is None:
[51f14603]165                return self.set_qmin(-1.0)
166            return self.set_qmin(value)
167        elif name == 'q_max':
[235f514]168            if value is None:
[51f14603]169                return self.set_qmax(-1.0)
170            return self.set_qmax(value)
171        elif name == 'alpha':
172            return self.set_alpha(value)
173        elif name == 'slit_height':
174            return self.set_slit_height(value)
175        elif name == 'slit_width':
176            return self.set_slit_width(value)
[cb62bd5]177        elif name == 'est_bck':
[51f14603]178            if value == True:
[cb62bd5]179                return self.set_est_bck(1)
[51f14603]180            elif value == False:
[cb62bd5]181                return self.set_est_bck(0)
[51f14603]182            else:
[574adc7]183                raise ValueError("Invertor: est_bck can only be True or False")
[3350ad6]184
[51f14603]185        return Cinvertor.__setattr__(self, name, value)
[3350ad6]186
[51f14603]187    def __getattr__(self, name):
188        """
189        Return the value of an attribute
190        """
191        #import numpy
192        if name == 'x':
[9a5097c]193            out = np.ones(self.get_nx())
[51f14603]194            self.get_x(out)
195            return out
196        elif name == 'y':
[9a5097c]197            out = np.ones(self.get_ny())
[51f14603]198            self.get_y(out)
199            return out
200        elif name == 'err':
[9a5097c]201            out = np.ones(self.get_nerr())
[51f14603]202            self.get_err(out)
203            return out
204        elif name == 'd_max':
205            return self.get_dmax()
206        elif name == 'q_min':
207            qmin = self.get_qmin()
208            if qmin < 0:
209                return None
210            return qmin
211        elif name == 'q_max':
212            qmax = self.get_qmax()
213            if qmax < 0:
214                return None
215            return qmax
216        elif name == 'alpha':
217            return self.get_alpha()
218        elif name == 'slit_height':
219            return self.get_slit_height()
220        elif name == 'slit_width':
221            return self.get_slit_width()
[cb62bd5]222        elif name == 'est_bck':
223            value = self.get_est_bck()
[b8080e1]224            return value == 1
[51f14603]225        elif name in self.__dict__:
226            return self.__dict__[name]
227        return None
[3350ad6]228
[fba204bf]229    def add_errors(self, yvalues):
230        """
231        Adds errors to data set is they are not avaialble
232        :return:
233        """
234        stats_errors = np.zeros(len(yvalues))
235        for i in range(len(yvalues)):
236            # Scale the error so that we can fit over several decades of Q
237            scale = 0.05 * np.sqrt(yvalues[i])
238            min_err = 0.01 * yvalues[i]
239            stats_errors[i] = scale * np.sqrt(np.fabs(yvalues[i])) + min_err
[6701a0b]240        logger.warning("Simulated errors have been added to the data set\n")
[fba204bf]241        return stats_errors
242
[51f14603]243    def clone(self):
244        """
245        Return a clone of this instance
246        """
247        #import copy
[3350ad6]248
[51f14603]249        invertor = Invertor()
[3350ad6]250        invertor.chi2 = self.chi2
[51f14603]251        invertor.elapsed = self.elapsed
[3350ad6]252        invertor.nfunc = self.nfunc
253        invertor.alpha = self.alpha
254        invertor.d_max = self.d_max
255        invertor.q_min = self.q_min
256        invertor.q_max = self.q_max
257
[51f14603]258        invertor.x = self.x
259        invertor.y = self.y
[eeea6a3]260        invertor.err = self.err
[cb62bd5]261        invertor.est_bck = self.est_bck
262        invertor.background = self.background
[51f14603]263        invertor.slit_height = self.slit_height
264        invertor.slit_width = self.slit_width
[3350ad6]265
[51f14603]266        invertor.info = copy.deepcopy(self.info)
[3350ad6]267
[51f14603]268        return invertor
[3350ad6]269
[51f14603]270    def invert(self, nfunc=10, nr=20):
271        """
272        Perform inversion to P(r)
[3350ad6]273
[51f14603]274        The problem is solved by posing the problem as  Ax = b,
275        where x is the set of coefficients we are looking for.
[3350ad6]276
[51f14603]277        Npts is the number of points.
[3350ad6]278
[51f14603]279        In the following i refers to the ith base function coefficient.
280        The matrix has its entries j in its first Npts rows set to ::
281
282            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]283
[6701a0b]284        We then choose a number of r-points, n_r, to evaluate the second
[51f14603]285        derivative of P(r) at. This is used as our regularization term.
286        For a vector r of length n_r, the following n_r rows are set to ::
287
288            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]289
[51f14603]290        The vector b has its first Npts entries set to ::
291
292            b[j] = (I(q) observed for point j)
[3350ad6]293
[51f14603]294        The following n_r entries are set to zero.
[3350ad6]295
[51f14603]296        The result is found by using scipy.linalg.basic.lstsq to invert
297        the matrix and find the coefficients x.
[3350ad6]298
[51f14603]299        :param nfunc: number of base functions to use.
300        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
301        :return: c_out, c_cov - the coefficients with covariance matrix
302        """
303        # Reset the background value before proceeding
[cb62bd5]304        # self.background = 0.0
305        if not self.est_bck:
306            self.y -= self.background
307        out, cov = self.lstsq(nfunc, nr=nr)
308        if not self.est_bck:
309            self.y += self.background
310        return out, cov
[3350ad6]311
[51f14603]312    def iq(self, out, q):
313        """
314        Function to call to evaluate the scattering intensity
[3350ad6]315
[51f14603]316        :param args: c-parameters, and q
317        :return: I(q)
[3350ad6]318
[51f14603]319        """
320        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]321
[51f14603]322    def invert_optimize(self, nfunc=10, nr=20):
323        """
324        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]325
[51f14603]326        This probably produce more reliable results, but is much slower.
327        The minimization function is set to
328        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
329        where the reg_term is given by Svergun: it is the integral of
330        the square of the first derivative
331        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]332
[51f14603]333        :param nfunc: number of base functions to use.
334        :param nr: number of r points to evaluate the 2nd derivative at
335            for the reg. term.
[3350ad6]336
[51f14603]337        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]338
[51f14603]339        """
340        self.nfunc = nfunc
341        # First, check that the current data is valid
342        if self.is_valid() <= 0:
343            msg = "Invertor.invert: Data array are of different length"
[574adc7]344            raise RuntimeError(msg)
[3350ad6]345
[9a5097c]346        p = np.ones(nfunc)
[51f14603]347        t_0 = time.time()
[3350ad6]348        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
349
[51f14603]350        # Compute chi^2
351        res = self.residuals(out)
352        chisqr = 0
353        for i in range(len(res)):
354            chisqr += res[i]
[3350ad6]355
[51f14603]356        self.chi2 = chisqr
357
358        # Store computation time
359        self.elapsed = time.time() - t_0
[3350ad6]360
[51f14603]361        if cov_x is None:
[9a5097c]362            cov_x = np.ones([nfunc, nfunc])
[51f14603]363            cov_x *= math.fabs(chisqr)
364        return out, cov_x
[3350ad6]365
[51f14603]366    def pr_fit(self, nfunc=5):
367        """
368        This is a direct fit to a given P(r). It assumes that the y data
369        is set to some P(r) distribution that we are trying to reproduce
370        with a set of base functions.
[3350ad6]371
[51f14603]372        This method is provided as a test.
373        """
374        # First, check that the current data is valid
375        if self.is_valid() <= 0:
376            msg = "Invertor.invert: Data arrays are of different length"
[574adc7]377            raise RuntimeError(msg)
[3350ad6]378
[9a5097c]379        p = np.ones(nfunc)
[51f14603]380        t_0 = time.time()
[3350ad6]381        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
382
[51f14603]383        # Compute chi^2
384        res = self.pr_residuals(out)
385        chisqr = 0
386        for i in range(len(res)):
387            chisqr += res[i]
[3350ad6]388
[51f14603]389        self.chisqr = chisqr
[3350ad6]390
[51f14603]391        # Store computation time
392        self.elapsed = time.time() - t_0
393
394        return out, cov_x
[3350ad6]395
[51f14603]396    def pr_err(self, c, c_cov, r):
397        """
398        Returns the value of P(r) for a given r, and base function
399        coefficients, with error.
[3350ad6]400
[51f14603]401        :param c: base function coefficients
402        :param c_cov: covariance matrice of the base function coefficients
403        :param r: r-value to evaluate P(r) at
[3350ad6]404
[51f14603]405        :return: P(r)
[3350ad6]406
[51f14603]407        """
408        return self.get_pr_err(c, c_cov, r)
[3350ad6]409
[51f14603]410    def _accept_q(self, q):
411        """
412        Check q-value against user-defined range
413        """
[ac07a3a]414        if self.q_min is not None and q < self.q_min:
[51f14603]415            return False
[ac07a3a]416        if self.q_max is not None and q > self.q_max:
[51f14603]417            return False
418        return True
[3350ad6]419
[51f14603]420    def lstsq(self, nfunc=5, nr=20):
421        """
422        The problem is solved by posing the problem as  Ax = b,
423        where x is the set of coefficients we are looking for.
[3350ad6]424
[51f14603]425        Npts is the number of points.
[3350ad6]426
[51f14603]427        In the following i refers to the ith base function coefficient.
428        The matrix has its entries j in its first Npts rows set to ::
429
430            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]431
[51f14603]432        We them choose a number of r-points, n_r, to evaluate the second
433        derivative of P(r) at. This is used as our regularization term.
434        For a vector r of length n_r, the following n_r rows are set to ::
435
436            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
437            evaluated at r[j])
[3350ad6]438
[51f14603]439        The vector b has its first Npts entries set to ::
440
441            b[j] = (I(q) observed for point j)
[3350ad6]442
[51f14603]443        The following n_r entries are set to zero.
[3350ad6]444
[51f14603]445        The result is found by using scipy.linalg.basic.lstsq to invert
446        the matrix and find the coefficients x.
[3350ad6]447
[51f14603]448        :param nfunc: number of base functions to use.
449        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
450
451        If the result does not allow us to compute the covariance matrix,
452        a matrix filled with zeros will be returned.
453
454        """
455        # Note: To make sure an array is contiguous:
[9a5097c]456        # blah = np.ascontiguousarray(blah_original)
[51f14603]457        # ... before passing it to C
[3350ad6]458
[51f14603]459        if self.is_valid() < 0:
460            msg = "Invertor: invalid data; incompatible data lengths."
[574adc7]461            raise RuntimeError(msg)
[3350ad6]462
[51f14603]463        self.nfunc = nfunc
464        # a -- An M x N matrix.
465        # b -- An M x nrhs matrix or M vector.
466        npts = len(self.x)
[3350ad6]467        nq = nr
[51f14603]468        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
469        if sqrt_alpha < 0.0:
470            nq = 0
471
472        # If we need to fit the background, add a term
[b8080e1]473        if self.est_bck:
[51f14603]474            nfunc_0 = nfunc
475            nfunc += 1
476
[9a5097c]477        a = np.zeros([npts + nq, nfunc])
478        b = np.zeros(npts + nq)
479        err = np.zeros([nfunc, nfunc])
[3350ad6]480
[51f14603]481        # Construct the a matrix and b vector that represent the problem
482        t_0 = time.time()
483        try:
484            self._get_matrix(nfunc, nq, a, b)
[d04ac05]485        except Exception as exc:
486            raise RuntimeError("Invertor: could not invert I(Q)\n  %s" % str(exc))
[3350ad6]487
[51f14603]488        # Perform the inversion (least square fit)
489        c, chi2, _, _ = lstsq(a, b)
490        # Sanity check
491        try:
492            float(chi2)
493        except:
[6da860a]494            chi2 = -1.0
[51f14603]495        self.chi2 = chi2
[3350ad6]496
[9a5097c]497        inv_cov = np.zeros([nfunc, nfunc])
[51f14603]498        # Get the covariance matrix, defined as inv_cov = a_transposed * a
499        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]500
[51f14603]501        # Compute the reg term size for the output
502        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]503
[51f14603]504        if math.fabs(self.alpha) > 0:
505            new_alpha = sum_sig / (sum_reg / self.alpha)
506        else:
507            new_alpha = 0.0
508        self.suggested_alpha = new_alpha
[3350ad6]509
[51f14603]510        try:
[9a5097c]511            cov = np.linalg.pinv(inv_cov)
[51f14603]512            err = math.fabs(chi2 / float(npts - nfunc)) * cov
[b8080e1]513        except:
[51f14603]514            # We were not able to estimate the errors
515            # Return an empty error matrix
[b8080e1]516            logger.error(sys.exc_value)
[3350ad6]517
[51f14603]518        # Keep a copy of the last output
[b8080e1]519        if not self.est_bck:
[51f14603]520            self.out = c
521            self.cov = err
522        else:
523            self.background = c[0]
[3350ad6]524
[9a5097c]525            err_0 = np.zeros([nfunc, nfunc])
526            c_0 = np.zeros(nfunc)
[3350ad6]527
[51f14603]528            for i in range(nfunc_0):
[3350ad6]529                c_0[i] = c[i + 1]
[51f14603]530                for j in range(nfunc_0):
[3350ad6]531                    err_0[i][j] = err[i + 1][j + 1]
532
[51f14603]533            self.out = c_0
534            self.cov = err_0
[3350ad6]535
[51f14603]536        # Store computation time
537        self.elapsed = time.time() - t_0
[3350ad6]538
[51f14603]539        return self.out, self.cov
[3350ad6]540
[51f14603]541    def estimate_numterms(self, isquit_func=None):
542        """
543        Returns a reasonable guess for the
544        number of terms
[3350ad6]545
[51f14603]546        :param isquit_func:
547          reference to thread function to call to check whether the computation needs to
548          be stopped.
[3350ad6]549
[51f14603]550        :return: number of terms, alpha, message
[3350ad6]551
[51f14603]552        """
[b8080e1]553        from .num_term import NTermEstimator
[5f8fc78]554        estimator = NTermEstimator(self.clone())
[51f14603]555        try:
556            return estimator.num_terms(isquit_func)
[b8080e1]557        except:
[51f14603]558            # If we fail, estimate alpha and return the default
559            # number of terms
560            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[b8080e1]561            logger.warning("Invertor.estimate_numterms: %s" % sys.exc_value)
[51f14603]562            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]563
[51f14603]564    def estimate_alpha(self, nfunc):
565        """
566        Returns a reasonable guess for the
567        regularization constant alpha
[3350ad6]568
[51f14603]569        :param nfunc: number of terms to use in the expansion.
[3350ad6]570
[51f14603]571        :return: alpha, message, elapsed
[3350ad6]572
[51f14603]573        where alpha is the estimate for alpha,
574        message is a message for the user,
575        elapsed is the computation time
576        """
577        #import time
578        try:
579            pr = self.clone()
[3350ad6]580
[51f14603]581            # T_0 for computation time
582            starttime = time.time()
583            elapsed = 0
[3350ad6]584
[51f14603]585            # If the current alpha is zero, try
586            # another value
587            if pr.alpha <= 0:
588                pr.alpha = 0.0001
[3350ad6]589
[51f14603]590            # Perform inversion to find the largest alpha
591            out, _ = pr.invert(nfunc)
592            elapsed = time.time() - starttime
593            initial_alpha = pr.alpha
594            initial_peaks = pr.get_peaks(out)
[3350ad6]595
[51f14603]596            # Try the inversion with the estimated alpha
597            pr.alpha = pr.suggested_alpha
598            out, _ = pr.invert(nfunc)
[3350ad6]599
[51f14603]600            npeaks = pr.get_peaks(out)
601            # if more than one peak to start with
602            # just return the estimate
603            if npeaks > 1:
604                #message = "Your P(r) is not smooth,
605                #please check your inversion parameters"
606                message = None
607                return pr.suggested_alpha, message, elapsed
608            else:
[3350ad6]609
[51f14603]610                # Look at smaller values
611                # We assume that for the suggested alpha, we have 1 peak
612                # if not, send a message to change parameters
613                alpha = pr.suggested_alpha
614                best_alpha = pr.suggested_alpha
615                found = False
616                for i in range(10):
[3350ad6]617                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]618                    out, _ = pr.invert(nfunc)
[3350ad6]619
[51f14603]620                    peaks = pr.get_peaks(out)
621                    if peaks > 1:
622                        found = True
623                        break
624                    best_alpha = pr.alpha
[3350ad6]625
[51f14603]626                # If we didn't find a turning point for alpha and
627                # the initial alpha already had only one peak,
628                # just return that
629                if not found and initial_peaks == 1 and \
630                    initial_alpha < best_alpha:
631                    best_alpha = initial_alpha
[3350ad6]632
[51f14603]633                # Check whether the size makes sense
634                message = ''
[3350ad6]635
[51f14603]636                if not found:
637                    message = None
638                elif best_alpha >= 0.5 * pr.suggested_alpha:
639                    # best alpha is too big, return a
640                    # reasonable value
[3350ad6]641                    message = "The estimated alpha for your system is too "
[51f14603]642                    message += "large. "
643                    message += "Try increasing your maximum distance."
[3350ad6]644
[51f14603]645                return best_alpha, message, elapsed
[3350ad6]646
[b8080e1]647        except:
648            message = "Invertor.estimate_alpha: %s" % sys.exc_value
[51f14603]649            return 0, message, elapsed
[3350ad6]650
[51f14603]651    def to_file(self, path, npts=100):
652        """
653        Save the state to a file that will be readable
654        by SliceView.
[3350ad6]655
[51f14603]656        :param path: path of the file to write
657        :param npts: number of P(r) points to be written
[3350ad6]658
[51f14603]659        """
660        file = open(path, 'w')
661        file.write("#d_max=%g\n" % self.d_max)
662        file.write("#nfunc=%g\n" % self.nfunc)
663        file.write("#alpha=%g\n" % self.alpha)
664        file.write("#chi2=%g\n" % self.chi2)
665        file.write("#elapsed=%g\n" % self.elapsed)
666        file.write("#qmin=%s\n" % str(self.q_min))
667        file.write("#qmax=%s\n" % str(self.q_max))
668        file.write("#slit_height=%g\n" % self.slit_height)
669        file.write("#slit_width=%g\n" % self.slit_width)
670        file.write("#background=%g\n" % self.background)
[b8080e1]671        if self.est_bck:
[51f14603]672            file.write("#has_bck=1\n")
673        else:
674            file.write("#has_bck=0\n")
675        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
[45dffa69]676        if self.out is not None:
[51f14603]677            if len(self.out) == len(self.cov):
678                for i in range(len(self.out)):
679                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]680                                                   str(self.cov[i][i])))
[51f14603]681        file.write("<r>  <Pr>  <dPr>\n")
[9a5097c]682        r = np.arange(0.0, self.d_max, self.d_max / npts)
[3350ad6]683
[51f14603]684        for r_i in r:
685            (value, err) = self.pr_err(self.out, self.cov, r_i)
686            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]687
[51f14603]688        file.close()
[3350ad6]689
[51f14603]690    def from_file(self, path):
691        """
692        Load the state of the Invertor from a file,
693        to be able to generate P(r) from a set of
694        parameters.
[3350ad6]695
[51f14603]696        :param path: path of the file to load
[3350ad6]697
[51f14603]698        """
699        #import os
700        #import re
701        if os.path.isfile(path):
702            try:
703                fd = open(path, 'r')
[3350ad6]704
[51f14603]705                buff = fd.read()
706                lines = buff.split('\n')
707                for line in lines:
708                    if line.startswith('#d_max='):
709                        toks = line.split('=')
710                        self.d_max = float(toks[1])
711                    elif line.startswith('#nfunc='):
712                        toks = line.split('=')
713                        self.nfunc = int(toks[1])
[9a5097c]714                        self.out = np.zeros(self.nfunc)
715                        self.cov = np.zeros([self.nfunc, self.nfunc])
[51f14603]716                    elif line.startswith('#alpha='):
717                        toks = line.split('=')
718                        self.alpha = float(toks[1])
719                    elif line.startswith('#chi2='):
720                        toks = line.split('=')
721                        self.chi2 = float(toks[1])
722                    elif line.startswith('#elapsed='):
723                        toks = line.split('=')
724                        self.elapsed = float(toks[1])
725                    elif line.startswith('#alpha_estimate='):
726                        toks = line.split('=')
727                        self.suggested_alpha = float(toks[1])
728                    elif line.startswith('#qmin='):
729                        toks = line.split('=')
730                        try:
731                            self.q_min = float(toks[1])
732                        except:
733                            self.q_min = None
734                    elif line.startswith('#qmax='):
735                        toks = line.split('=')
736                        try:
737                            self.q_max = float(toks[1])
738                        except:
739                            self.q_max = None
740                    elif line.startswith('#slit_height='):
741                        toks = line.split('=')
742                        self.slit_height = float(toks[1])
743                    elif line.startswith('#slit_width='):
744                        toks = line.split('=')
745                        self.slit_width = float(toks[1])
746                    elif line.startswith('#background='):
747                        toks = line.split('=')
748                        self.background = float(toks[1])
749                    elif line.startswith('#has_bck='):
750                        toks = line.split('=')
[b8080e1]751                        self.est_bck = int(toks[1]) == 1
[3350ad6]752
[51f14603]753                    # Now read in the parameters
754                    elif line.startswith('#C_'):
755                        toks = line.split('=')
756                        p = re.compile('#C_([0-9]+)')
757                        m = p.search(toks[0])
758                        toks2 = toks[1].split('+-')
759                        i = int(m.group(1))
760                        self.out[i] = float(toks2[0])
[3350ad6]761
[51f14603]762                        self.cov[i][i] = float(toks2[1])
[3350ad6]763
[b8080e1]764            except:
765                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value
[574adc7]766                raise RuntimeError(msg)
[51f14603]767        else:
768            msg = "Invertor.from_file: '%s' is not a file" % str(path)
[574adc7]769            raise RuntimeError(msg)
Note: See TracBrowser for help on using the repository browser.