source: sasview/src/sas/sascalc/pr/invertor.py @ aed159f

ESS_GUIESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since aed159f was aed159f, checked in by Piotr Rozyczko <piotr.rozyczko@…>, 5 years ago

Minor corrections to Inversion after PK's CR

  • Property mode set to 100644
File size: 25.5 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
[9a5097c]9import numpy as np
[51f14603]10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
[463e7ffc]21logger = logging.getLogger(__name__)
[c155a16]22
[51f14603]23def help():
24    """
25    Provide general online help text
26    Future work: extend this function to allow topic selection
27    """
[3350ad6]28    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]29    info_txt += "(1980) 13, 168-175.\n\n"
30    info_txt += "P(r) is set to be equal to an expansion of base functions "
31    info_txt += "of the type "
32    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
33    info_txt += "base functions "
34    info_txt += "in the expansion is found by performing a least square fit "
35    info_txt += "with the "
36    info_txt += "following fit function:\n\n"
37    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
38    info_txt += "Reg_term\n\n"
39    info_txt += "where I_meas(q) is the measured scattering intensity and "
40    info_txt += "I_th(q) is "
41    info_txt += "the prediction from the Fourier transform of the P(r) "
42    info_txt += "expansion. "
43    info_txt += "The Reg_term term is a regularization term set to the second"
44    info_txt += " derivative "
45    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
46    info_txt += "a smooth P(r) output.\n\n"
47    info_txt += "The following are user inputs:\n\n"
48    info_txt += "   - Number of terms: the number of base functions in the P(r)"
49    info_txt += " expansion.\n\n"
50    info_txt += "   - Regularization constant: a multiplicative constant "
51    info_txt += "to set the size of "
52    info_txt += "the regularization term.\n\n"
53    info_txt += "   - Maximum distance: the maximum distance between any "
54    info_txt += "two points in the system.\n"
[3350ad6]55
[51f14603]56    return info_txt
[3350ad6]57
[51f14603]58
59class Invertor(Cinvertor):
60    """
61    Invertor class to perform P(r) inversion
[3350ad6]62
[51f14603]63    The problem is solved by posing the problem as  Ax = b,
64    where x is the set of coefficients we are looking for.
[3350ad6]65
[51f14603]66    Npts is the number of points.
[3350ad6]67
[51f14603]68    In the following i refers to the ith base function coefficient.
69    The matrix has its entries j in its first Npts rows set to ::
70
71        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]72
[6701a0b]73    We then choose a number of r-points, n_r, to evaluate the second
[51f14603]74    derivative of P(r) at. This is used as our regularization term.
75    For a vector r of length n_r, the following n_r rows are set to ::
76
77        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
78        evaluated at r[j])
[3350ad6]79
[51f14603]80    The vector b has its first Npts entries set to ::
81
82        b[j] = (I(q) observed for point j)
[3350ad6]83
[51f14603]84    The following n_r entries are set to zero.
[3350ad6]85
[51f14603]86    The result is found by using scipy.linalg.basic.lstsq to invert
87    the matrix and find the coefficients x.
[3350ad6]88
[51f14603]89    Methods inherited from Cinvertor:
90
91    * ``get_peaks(pars)``: returns the number of P(r) peaks
92    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
93    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
94    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
95    """
96    ## Chisqr of the last computation
[3350ad6]97    chi2 = 0
[51f14603]98    ## Time elapsed for last computation
99    elapsed = 0
100    ## Alpha to get the reg term the same size as the signal
101    suggested_alpha = 0
102    ## Last number of base functions used
103    nfunc = 10
104    ## Last output values
105    out = None
106    ## Last errors on output values
107    cov = None
108    ## Background value
109    background = 0
110    ## Information dictionary for application use
111    info = {}
[3350ad6]112
[51f14603]113    def __init__(self):
114        Cinvertor.__init__(self)
[3350ad6]115
[51f14603]116    def __setstate__(self, state):
117        """
118        restore the state of invertor for pickle
119        """
120        (self.__dict__, self.alpha, self.d_max,
121         self.q_min, self.q_max,
122         self.x, self.y,
[cb62bd5]123         self.err, self.est_bck,
[51f14603]124         self.slit_height, self.slit_width) = state
[3350ad6]125
[51f14603]126    def __reduce_ex__(self, proto):
127        """
128        Overwrite the __reduce_ex__
129        """
130
131        state = (self.__dict__,
132                 self.alpha, self.d_max,
133                 self.q_min, self.q_max,
134                 self.x, self.y,
[cb62bd5]135                 self.err, self.est_bck,
[51f14603]136                 self.slit_height, self.slit_width,
[3350ad6]137                )
[51f14603]138        return (Invertor, tuple(), state, None, None)
[3350ad6]139
[51f14603]140    def __setattr__(self, name, value):
141        """
142        Set the value of an attribute.
143        Access the parent class methods for
144        x, y, err, d_max, q_min, q_max and alpha
145        """
[fba204bf]146        if name == 'x':
[51f14603]147            if 0.0 in value:
148                msg = "Invertor: one of your q-values is zero. "
149                msg += "Delete that entry before proceeding"
[574adc7]150                raise ValueError(msg)
[51f14603]151            return self.set_x(value)
152        elif name == 'y':
153            return self.set_y(value)
154        elif name == 'err':
155            value2 = abs(value)
156            return self.set_err(value2)
157        elif name == 'd_max':
[2c60f304]158            if value <= 0.0:
159                msg = "Invertor: d_max must be greater than zero."
160                msg += "Correct that entry before proceeding"
[574adc7]161                raise ValueError(msg)
[51f14603]162            return self.set_dmax(value)
163        elif name == 'q_min':
[235f514]164            if value is None:
[51f14603]165                return self.set_qmin(-1.0)
166            return self.set_qmin(value)
167        elif name == 'q_max':
[235f514]168            if value is None:
[51f14603]169                return self.set_qmax(-1.0)
170            return self.set_qmax(value)
171        elif name == 'alpha':
172            return self.set_alpha(value)
173        elif name == 'slit_height':
174            return self.set_slit_height(value)
175        elif name == 'slit_width':
176            return self.set_slit_width(value)
[cb62bd5]177        elif name == 'est_bck':
[51f14603]178            if value == True:
[cb62bd5]179                return self.set_est_bck(1)
[51f14603]180            elif value == False:
[cb62bd5]181                return self.set_est_bck(0)
[51f14603]182            else:
[574adc7]183                raise ValueError("Invertor: est_bck can only be True or False")
[3350ad6]184
[51f14603]185        return Cinvertor.__setattr__(self, name, value)
[3350ad6]186
[51f14603]187    def __getattr__(self, name):
188        """
189        Return the value of an attribute
190        """
191        #import numpy
192        if name == 'x':
[9a5097c]193            out = np.ones(self.get_nx())
[51f14603]194            self.get_x(out)
195            return out
196        elif name == 'y':
[9a5097c]197            out = np.ones(self.get_ny())
[51f14603]198            self.get_y(out)
199            return out
200        elif name == 'err':
[9a5097c]201            out = np.ones(self.get_nerr())
[51f14603]202            self.get_err(out)
203            return out
204        elif name == 'd_max':
205            return self.get_dmax()
206        elif name == 'q_min':
207            qmin = self.get_qmin()
208            if qmin < 0:
209                return None
210            return qmin
211        elif name == 'q_max':
212            qmax = self.get_qmax()
213            if qmax < 0:
214                return None
215            return qmax
216        elif name == 'alpha':
217            return self.get_alpha()
218        elif name == 'slit_height':
219            return self.get_slit_height()
220        elif name == 'slit_width':
221            return self.get_slit_width()
[cb62bd5]222        elif name == 'est_bck':
223            value = self.get_est_bck()
[b8080e1]224            return value == 1
[51f14603]225        elif name in self.__dict__:
226            return self.__dict__[name]
227        return None
[3350ad6]228
[aed159f]229    def add_errors(self, sigma=0.05):
[fba204bf]230        """
[aed159f]231        Adds errors to data set is they are not available.
232        Uses  $\Delta y = \sigma | y |$.
[fba204bf]233        """
[aed159f]234        self.dy = sigma * np.fabs(self.y)
[fba204bf]235
[51f14603]236    def clone(self):
237        """
238        Return a clone of this instance
239        """
240        #import copy
[3350ad6]241
[51f14603]242        invertor = Invertor()
[3350ad6]243        invertor.chi2 = self.chi2
[51f14603]244        invertor.elapsed = self.elapsed
[3350ad6]245        invertor.nfunc = self.nfunc
246        invertor.alpha = self.alpha
247        invertor.d_max = self.d_max
248        invertor.q_min = self.q_min
249        invertor.q_max = self.q_max
250
[51f14603]251        invertor.x = self.x
252        invertor.y = self.y
[eeea6a3]253        invertor.err = self.err
[cb62bd5]254        invertor.est_bck = self.est_bck
255        invertor.background = self.background
[51f14603]256        invertor.slit_height = self.slit_height
257        invertor.slit_width = self.slit_width
[3350ad6]258
[51f14603]259        invertor.info = copy.deepcopy(self.info)
[3350ad6]260
[51f14603]261        return invertor
[3350ad6]262
[51f14603]263    def invert(self, nfunc=10, nr=20):
264        """
265        Perform inversion to P(r)
[3350ad6]266
[51f14603]267        The problem is solved by posing the problem as  Ax = b,
268        where x is the set of coefficients we are looking for.
[3350ad6]269
[51f14603]270        Npts is the number of points.
[3350ad6]271
[51f14603]272        In the following i refers to the ith base function coefficient.
273        The matrix has its entries j in its first Npts rows set to ::
274
275            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]276
[6701a0b]277        We then choose a number of r-points, n_r, to evaluate the second
[51f14603]278        derivative of P(r) at. This is used as our regularization term.
279        For a vector r of length n_r, the following n_r rows are set to ::
280
281            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]282
[51f14603]283        The vector b has its first Npts entries set to ::
284
285            b[j] = (I(q) observed for point j)
[3350ad6]286
[51f14603]287        The following n_r entries are set to zero.
[3350ad6]288
[51f14603]289        The result is found by using scipy.linalg.basic.lstsq to invert
290        the matrix and find the coefficients x.
[3350ad6]291
[51f14603]292        :param nfunc: number of base functions to use.
293        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
294        :return: c_out, c_cov - the coefficients with covariance matrix
295        """
296        # Reset the background value before proceeding
[cb62bd5]297        # self.background = 0.0
298        if not self.est_bck:
299            self.y -= self.background
300        out, cov = self.lstsq(nfunc, nr=nr)
301        if not self.est_bck:
302            self.y += self.background
303        return out, cov
[3350ad6]304
[51f14603]305    def iq(self, out, q):
306        """
307        Function to call to evaluate the scattering intensity
[3350ad6]308
[51f14603]309        :param args: c-parameters, and q
310        :return: I(q)
[3350ad6]311
[51f14603]312        """
313        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]314
[51f14603]315    def invert_optimize(self, nfunc=10, nr=20):
316        """
317        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]318
[51f14603]319        This probably produce more reliable results, but is much slower.
320        The minimization function is set to
321        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
322        where the reg_term is given by Svergun: it is the integral of
323        the square of the first derivative
324        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]325
[51f14603]326        :param nfunc: number of base functions to use.
327        :param nr: number of r points to evaluate the 2nd derivative at
328            for the reg. term.
[3350ad6]329
[51f14603]330        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]331
[51f14603]332        """
333        self.nfunc = nfunc
334        # First, check that the current data is valid
335        if self.is_valid() <= 0:
336            msg = "Invertor.invert: Data array are of different length"
[574adc7]337            raise RuntimeError(msg)
[3350ad6]338
[9a5097c]339        p = np.ones(nfunc)
[51f14603]340        t_0 = time.time()
[3350ad6]341        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
342
[51f14603]343        # Compute chi^2
344        res = self.residuals(out)
345        chisqr = 0
346        for i in range(len(res)):
347            chisqr += res[i]
[3350ad6]348
[51f14603]349        self.chi2 = chisqr
350
351        # Store computation time
352        self.elapsed = time.time() - t_0
[3350ad6]353
[51f14603]354        if cov_x is None:
[9a5097c]355            cov_x = np.ones([nfunc, nfunc])
[51f14603]356            cov_x *= math.fabs(chisqr)
357        return out, cov_x
[3350ad6]358
[51f14603]359    def pr_fit(self, nfunc=5):
360        """
361        This is a direct fit to a given P(r). It assumes that the y data
362        is set to some P(r) distribution that we are trying to reproduce
363        with a set of base functions.
[3350ad6]364
[51f14603]365        This method is provided as a test.
366        """
367        # First, check that the current data is valid
368        if self.is_valid() <= 0:
369            msg = "Invertor.invert: Data arrays are of different length"
[574adc7]370            raise RuntimeError(msg)
[3350ad6]371
[9a5097c]372        p = np.ones(nfunc)
[51f14603]373        t_0 = time.time()
[3350ad6]374        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
375
[51f14603]376        # Compute chi^2
377        res = self.pr_residuals(out)
378        chisqr = 0
379        for i in range(len(res)):
380            chisqr += res[i]
[3350ad6]381
[51f14603]382        self.chisqr = chisqr
[3350ad6]383
[51f14603]384        # Store computation time
385        self.elapsed = time.time() - t_0
386
387        return out, cov_x
[3350ad6]388
[51f14603]389    def pr_err(self, c, c_cov, r):
390        """
391        Returns the value of P(r) for a given r, and base function
392        coefficients, with error.
[3350ad6]393
[51f14603]394        :param c: base function coefficients
395        :param c_cov: covariance matrice of the base function coefficients
396        :param r: r-value to evaluate P(r) at
[3350ad6]397
[51f14603]398        :return: P(r)
[3350ad6]399
[51f14603]400        """
401        return self.get_pr_err(c, c_cov, r)
[3350ad6]402
[51f14603]403    def _accept_q(self, q):
404        """
405        Check q-value against user-defined range
406        """
[ac07a3a]407        if self.q_min is not None and q < self.q_min:
[51f14603]408            return False
[ac07a3a]409        if self.q_max is not None and q > self.q_max:
[51f14603]410            return False
411        return True
[3350ad6]412
[51f14603]413    def lstsq(self, nfunc=5, nr=20):
414        """
415        The problem is solved by posing the problem as  Ax = b,
416        where x is the set of coefficients we are looking for.
[3350ad6]417
[51f14603]418        Npts is the number of points.
[3350ad6]419
[51f14603]420        In the following i refers to the ith base function coefficient.
421        The matrix has its entries j in its first Npts rows set to ::
422
423            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]424
[51f14603]425        We them choose a number of r-points, n_r, to evaluate the second
426        derivative of P(r) at. This is used as our regularization term.
427        For a vector r of length n_r, the following n_r rows are set to ::
428
429            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
430            evaluated at r[j])
[3350ad6]431
[51f14603]432        The vector b has its first Npts entries set to ::
433
434            b[j] = (I(q) observed for point j)
[3350ad6]435
[51f14603]436        The following n_r entries are set to zero.
[3350ad6]437
[51f14603]438        The result is found by using scipy.linalg.basic.lstsq to invert
439        the matrix and find the coefficients x.
[3350ad6]440
[51f14603]441        :param nfunc: number of base functions to use.
442        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
443
444        If the result does not allow us to compute the covariance matrix,
445        a matrix filled with zeros will be returned.
446
447        """
448        # Note: To make sure an array is contiguous:
[9a5097c]449        # blah = np.ascontiguousarray(blah_original)
[51f14603]450        # ... before passing it to C
[3350ad6]451
[51f14603]452        if self.is_valid() < 0:
453            msg = "Invertor: invalid data; incompatible data lengths."
[574adc7]454            raise RuntimeError(msg)
[3350ad6]455
[51f14603]456        self.nfunc = nfunc
457        # a -- An M x N matrix.
458        # b -- An M x nrhs matrix or M vector.
459        npts = len(self.x)
[3350ad6]460        nq = nr
[51f14603]461        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
462        if sqrt_alpha < 0.0:
463            nq = 0
464
465        # If we need to fit the background, add a term
[b8080e1]466        if self.est_bck:
[51f14603]467            nfunc_0 = nfunc
468            nfunc += 1
469
[9a5097c]470        a = np.zeros([npts + nq, nfunc])
471        b = np.zeros(npts + nq)
472        err = np.zeros([nfunc, nfunc])
[3350ad6]473
[51f14603]474        # Construct the a matrix and b vector that represent the problem
475        t_0 = time.time()
476        try:
477            self._get_matrix(nfunc, nq, a, b)
[d04ac05]478        except Exception as exc:
479            raise RuntimeError("Invertor: could not invert I(Q)\n  %s" % str(exc))
[3350ad6]480
[51f14603]481        # Perform the inversion (least square fit)
482        c, chi2, _, _ = lstsq(a, b)
483        # Sanity check
484        try:
485            float(chi2)
486        except:
[6da860a]487            chi2 = -1.0
[51f14603]488        self.chi2 = chi2
[3350ad6]489
[9a5097c]490        inv_cov = np.zeros([nfunc, nfunc])
[51f14603]491        # Get the covariance matrix, defined as inv_cov = a_transposed * a
492        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]493
[51f14603]494        # Compute the reg term size for the output
495        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]496
[51f14603]497        if math.fabs(self.alpha) > 0:
498            new_alpha = sum_sig / (sum_reg / self.alpha)
499        else:
500            new_alpha = 0.0
501        self.suggested_alpha = new_alpha
[3350ad6]502
[51f14603]503        try:
[9a5097c]504            cov = np.linalg.pinv(inv_cov)
[51f14603]505            err = math.fabs(chi2 / float(npts - nfunc)) * cov
[b8080e1]506        except:
[51f14603]507            # We were not able to estimate the errors
508            # Return an empty error matrix
[aed159f]509            logger.error(sys.exc_info()[1])
[3350ad6]510
[51f14603]511        # Keep a copy of the last output
[b8080e1]512        if not self.est_bck:
[51f14603]513            self.out = c
514            self.cov = err
515        else:
516            self.background = c[0]
[3350ad6]517
[9a5097c]518            err_0 = np.zeros([nfunc, nfunc])
519            c_0 = np.zeros(nfunc)
[3350ad6]520
[51f14603]521            for i in range(nfunc_0):
[3350ad6]522                c_0[i] = c[i + 1]
[51f14603]523                for j in range(nfunc_0):
[3350ad6]524                    err_0[i][j] = err[i + 1][j + 1]
525
[51f14603]526            self.out = c_0
527            self.cov = err_0
[3350ad6]528
[51f14603]529        # Store computation time
530        self.elapsed = time.time() - t_0
[3350ad6]531
[51f14603]532        return self.out, self.cov
[3350ad6]533
[51f14603]534    def estimate_numterms(self, isquit_func=None):
535        """
536        Returns a reasonable guess for the
537        number of terms
[3350ad6]538
[51f14603]539        :param isquit_func:
540          reference to thread function to call to check whether the computation needs to
541          be stopped.
[3350ad6]542
[51f14603]543        :return: number of terms, alpha, message
[3350ad6]544
[51f14603]545        """
[b8080e1]546        from .num_term import NTermEstimator
[5f8fc78]547        estimator = NTermEstimator(self.clone())
[51f14603]548        try:
549            return estimator.num_terms(isquit_func)
[b8080e1]550        except:
[51f14603]551            # If we fail, estimate alpha and return the default
552            # number of terms
553            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[aed159f]554            logger.warning("Invertor.estimate_numterms: %s" % sys.exc_info()[1])
[51f14603]555            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]556
[51f14603]557    def estimate_alpha(self, nfunc):
558        """
559        Returns a reasonable guess for the
560        regularization constant alpha
[3350ad6]561
[51f14603]562        :param nfunc: number of terms to use in the expansion.
[3350ad6]563
[51f14603]564        :return: alpha, message, elapsed
[3350ad6]565
[51f14603]566        where alpha is the estimate for alpha,
567        message is a message for the user,
568        elapsed is the computation time
569        """
570        #import time
571        try:
572            pr = self.clone()
[3350ad6]573
[51f14603]574            # T_0 for computation time
575            starttime = time.time()
576            elapsed = 0
[3350ad6]577
[51f14603]578            # If the current alpha is zero, try
579            # another value
580            if pr.alpha <= 0:
581                pr.alpha = 0.0001
[3350ad6]582
[51f14603]583            # Perform inversion to find the largest alpha
584            out, _ = pr.invert(nfunc)
585            elapsed = time.time() - starttime
586            initial_alpha = pr.alpha
587            initial_peaks = pr.get_peaks(out)
[3350ad6]588
[51f14603]589            # Try the inversion with the estimated alpha
590            pr.alpha = pr.suggested_alpha
591            out, _ = pr.invert(nfunc)
[3350ad6]592
[51f14603]593            npeaks = pr.get_peaks(out)
594            # if more than one peak to start with
595            # just return the estimate
596            if npeaks > 1:
597                #message = "Your P(r) is not smooth,
598                #please check your inversion parameters"
599                message = None
600                return pr.suggested_alpha, message, elapsed
601            else:
[3350ad6]602
[51f14603]603                # Look at smaller values
604                # We assume that for the suggested alpha, we have 1 peak
605                # if not, send a message to change parameters
606                alpha = pr.suggested_alpha
607                best_alpha = pr.suggested_alpha
608                found = False
609                for i in range(10):
[3350ad6]610                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]611                    out, _ = pr.invert(nfunc)
[3350ad6]612
[51f14603]613                    peaks = pr.get_peaks(out)
614                    if peaks > 1:
615                        found = True
616                        break
617                    best_alpha = pr.alpha
[3350ad6]618
[51f14603]619                # If we didn't find a turning point for alpha and
620                # the initial alpha already had only one peak,
621                # just return that
622                if not found and initial_peaks == 1 and \
623                    initial_alpha < best_alpha:
624                    best_alpha = initial_alpha
[3350ad6]625
[51f14603]626                # Check whether the size makes sense
627                message = ''
[3350ad6]628
[51f14603]629                if not found:
630                    message = None
631                elif best_alpha >= 0.5 * pr.suggested_alpha:
632                    # best alpha is too big, return a
633                    # reasonable value
[3350ad6]634                    message = "The estimated alpha for your system is too "
[51f14603]635                    message += "large. "
636                    message += "Try increasing your maximum distance."
[3350ad6]637
[51f14603]638                return best_alpha, message, elapsed
[3350ad6]639
[b8080e1]640        except:
[aed159f]641            message = "Invertor.estimate_alpha: %s" % sys.exc_info()[1]
[51f14603]642            return 0, message, elapsed
[3350ad6]643
[51f14603]644    def to_file(self, path, npts=100):
645        """
646        Save the state to a file that will be readable
647        by SliceView.
[3350ad6]648
[51f14603]649        :param path: path of the file to write
650        :param npts: number of P(r) points to be written
[3350ad6]651
[51f14603]652        """
653        file = open(path, 'w')
654        file.write("#d_max=%g\n" % self.d_max)
655        file.write("#nfunc=%g\n" % self.nfunc)
656        file.write("#alpha=%g\n" % self.alpha)
657        file.write("#chi2=%g\n" % self.chi2)
658        file.write("#elapsed=%g\n" % self.elapsed)
659        file.write("#qmin=%s\n" % str(self.q_min))
660        file.write("#qmax=%s\n" % str(self.q_max))
661        file.write("#slit_height=%g\n" % self.slit_height)
662        file.write("#slit_width=%g\n" % self.slit_width)
663        file.write("#background=%g\n" % self.background)
[b8080e1]664        if self.est_bck:
[51f14603]665            file.write("#has_bck=1\n")
666        else:
667            file.write("#has_bck=0\n")
668        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
[45dffa69]669        if self.out is not None:
[51f14603]670            if len(self.out) == len(self.cov):
671                for i in range(len(self.out)):
672                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]673                                                   str(self.cov[i][i])))
[51f14603]674        file.write("<r>  <Pr>  <dPr>\n")
[9a5097c]675        r = np.arange(0.0, self.d_max, self.d_max / npts)
[3350ad6]676
[51f14603]677        for r_i in r:
678            (value, err) = self.pr_err(self.out, self.cov, r_i)
679            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]680
[51f14603]681        file.close()
[3350ad6]682
[51f14603]683    def from_file(self, path):
684        """
685        Load the state of the Invertor from a file,
686        to be able to generate P(r) from a set of
687        parameters.
[3350ad6]688
[51f14603]689        :param path: path of the file to load
[3350ad6]690
[51f14603]691        """
692        #import os
693        #import re
694        if os.path.isfile(path):
695            try:
696                fd = open(path, 'r')
[3350ad6]697
[51f14603]698                buff = fd.read()
699                lines = buff.split('\n')
700                for line in lines:
701                    if line.startswith('#d_max='):
702                        toks = line.split('=')
703                        self.d_max = float(toks[1])
704                    elif line.startswith('#nfunc='):
705                        toks = line.split('=')
706                        self.nfunc = int(toks[1])
[9a5097c]707                        self.out = np.zeros(self.nfunc)
708                        self.cov = np.zeros([self.nfunc, self.nfunc])
[51f14603]709                    elif line.startswith('#alpha='):
710                        toks = line.split('=')
711                        self.alpha = float(toks[1])
712                    elif line.startswith('#chi2='):
713                        toks = line.split('=')
714                        self.chi2 = float(toks[1])
715                    elif line.startswith('#elapsed='):
716                        toks = line.split('=')
717                        self.elapsed = float(toks[1])
718                    elif line.startswith('#alpha_estimate='):
719                        toks = line.split('=')
720                        self.suggested_alpha = float(toks[1])
721                    elif line.startswith('#qmin='):
722                        toks = line.split('=')
723                        try:
724                            self.q_min = float(toks[1])
725                        except:
726                            self.q_min = None
727                    elif line.startswith('#qmax='):
728                        toks = line.split('=')
729                        try:
730                            self.q_max = float(toks[1])
731                        except:
732                            self.q_max = None
733                    elif line.startswith('#slit_height='):
734                        toks = line.split('=')
735                        self.slit_height = float(toks[1])
736                    elif line.startswith('#slit_width='):
737                        toks = line.split('=')
738                        self.slit_width = float(toks[1])
739                    elif line.startswith('#background='):
740                        toks = line.split('=')
741                        self.background = float(toks[1])
742                    elif line.startswith('#has_bck='):
743                        toks = line.split('=')
[b8080e1]744                        self.est_bck = int(toks[1]) == 1
[3350ad6]745
[51f14603]746                    # Now read in the parameters
747                    elif line.startswith('#C_'):
748                        toks = line.split('=')
749                        p = re.compile('#C_([0-9]+)')
750                        m = p.search(toks[0])
751                        toks2 = toks[1].split('+-')
752                        i = int(m.group(1))
753                        self.out[i] = float(toks2[0])
[3350ad6]754
[51f14603]755                        self.cov[i][i] = float(toks2[1])
[3350ad6]756
[b8080e1]757            except:
[aed159f]758                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_info()[1]
[574adc7]759                raise RuntimeError(msg)
[51f14603]760        else:
761            msg = "Invertor.from_file: '%s' is not a file" % str(path)
[574adc7]762            raise RuntimeError(msg)
Note: See TracBrowser for help on using the repository browser.