""" This is the base file reader class most file readers should inherit from. All generic functionality required for a file loader/reader is built into this class """ import os import sys import re import logging from abc import abstractmethod import numpy as np from .loader_exceptions import NoKnownLoaderException, FileContentsException,\ DataReaderException, DefaultReaderException from .data_info import Data1D, Data2D, DataInfo, plottable_1D, plottable_2D,\ combine_data_info_with_plottable logger = logging.getLogger(__name__) if sys.version_info[0] < 3: def decode(s): return s else: def decode(s): return s.decode() if isinstance(s, bytes) else s class FileReader(object): # List of Data1D and Data2D objects to be sent back to data_loader output = [] # Current plottable_(1D/2D) object being loaded in current_dataset = None # Current DataInfo object being loaded in current_datainfo = None # String to describe the type of data this reader can load type_name = "ASCII" # Wildcards to display type = ["Text files (*.txt|*.TXT)"] # List of allowed extensions ext = ['.txt'] # Bypass extension check and try to load anyway allow_all = False # Able to import the unit converter has_converter = True # Open file handle f_open = None # Default value of zero _ZERO = 1e-16 def read(self, filepath): """ Basic file reader :param filepath: The full or relative path to a file to be loaded """ if os.path.isfile(filepath): basename, extension = os.path.splitext(os.path.basename(filepath)) self.extension = extension.lower() # If the file type is not allowed, return nothing if self.extension in self.ext or self.allow_all: # Try to load the file, but raise an error if unable to. try: self.f_open = open(filepath, 'rb') self.get_file_contents() except DataReaderException as e: self.handle_error_message(e.message) except OSError as e: # If the file cannot be opened msg = "Unable to open file: {}\n".format(filepath) msg += e.message self.handle_error_message(msg) finally: # Close the file handle if it is open if not self.f_open.closed: self.f_open.close() if len(self.output) > 0: # Sort the data that's been loaded self.sort_one_d_data() self.sort_two_d_data() else: msg = "Unable to find file at: {}\n".format(filepath) msg += "Please check your file path and try again." self.handle_error_message(msg) # Return a list of parsed entries that data_loader can manage final_data = self.output self.reset_state() return final_data def reset_state(self): """ Resets the class state to a base case when loading a new data file so previous data files do not appear a second time """ self.current_datainfo = None self.current_dataset = None self.output = [] def nextline(self): """ Returns the next line in the file as a string. """ #return self.f_open.readline() return decode(self.f_open.readline()) def nextlines(self): """ Returns the next line in the file as a string. """ for line in self.f_open: #yield line yield decode(line) def readall(self): """ Returns the entire file as a string. """ #return self.f_open.read() return decode(self.f_open.read()) def handle_error_message(self, msg): """ Generic error handler to add an error to the current datainfo to propogate the error up the error chain. :param msg: Error message """ if len(self.output) > 0: self.output[-1].errors.append(msg) elif isinstance(self.current_datainfo, DataInfo): self.current_datainfo.errors.append(msg) else: logger.warning(msg) def send_to_output(self): """ Helper that automatically combines the info and set and then appends it to output """ data_obj = combine_data_info_with_plottable(self.current_dataset, self.current_datainfo) self.output.append(data_obj) def sort_one_d_data(self): """ Sort 1D data along the X axis for consistency """ for data in self.output: if isinstance(data, Data1D): # Normalize the units for data.x_unit = self.format_unit(data.x_unit) data.y_unit = self.format_unit(data.y_unit) # Sort data by increasing x and remove 1st point ind = np.lexsort((data.y, data.x)) data.x = np.asarray([data.x[i] for i in ind]).astype(np.float64) data.y = np.asarray([data.y[i] for i in ind]).astype(np.float64) if data.dx is not None: if len(data.dx) == 0: data.dx = None continue data.dx = np.asarray([data.dx[i] for i in ind]).astype(np.float64) if data.dxl is not None: data.dxl = np.asarray([data.dxl[i] for i in ind]).astype(np.float64) if data.dxw is not None: data.dxw = np.asarray([data.dxw[i] for i in ind]).astype(np.float64) if data.dy is not None: if len(data.dy) == 0: data.dy = None continue data.dy = np.asarray([data.dy[i] for i in ind]).astype(np.float64) if data.lam is not None: data.lam = np.asarray([data.lam[i] for i in ind]).astype(np.float64) if data.dlam is not None: data.dlam = np.asarray([data.dlam[i] for i in ind]).astype(np.float64) if len(data.x) > 0: data.xmin = np.min(data.x) data.xmax = np.max(data.x) data.ymin = np.min(data.y) data.ymax = np.max(data.y) def sort_two_d_data(self): for dataset in self.output: if isinstance(dataset, Data2D): # Normalize the units for dataset.x_unit = self.format_unit(dataset.Q_unit) dataset.y_unit = self.format_unit(dataset.I_unit) dataset.data = dataset.data.astype(np.float64) dataset.qx_data = dataset.qx_data.astype(np.float64) dataset.xmin = np.min(dataset.qx_data) dataset.xmax = np.max(dataset.qx_data) dataset.qy_data = dataset.qy_data.astype(np.float64) dataset.ymin = np.min(dataset.qy_data) dataset.ymax = np.max(dataset.qy_data) dataset.q_data = np.sqrt(dataset.qx_data * dataset.qx_data + dataset.qy_data * dataset.qy_data) if dataset.err_data is not None: dataset.err_data = dataset.err_data.astype(np.float64) if dataset.dqx_data is not None: dataset.dqx_data = dataset.dqx_data.astype(np.float64) if dataset.dqy_data is not None: dataset.dqy_data = dataset.dqy_data.astype(np.float64) if dataset.mask is not None: dataset.mask = dataset.mask.astype(dtype=bool) if len(dataset.data.shape) == 2: n_rows, n_cols = dataset.data.shape dataset.y_bins = dataset.qy_data[0::int(n_cols)] dataset.x_bins = dataset.qx_data[:int(n_cols)] dataset.data = dataset.data.flatten() if len(dataset.data) > 0: dataset.xmin = np.min(dataset.qx_data) dataset.xmax = np.max(dataset.qx_data) dataset.ymin = np.min(dataset.qy_data) dataset.ymax = np.max(dataset.qx_data) def format_unit(self, unit=None): """ Format units a common way :param unit: :return: """ if unit: split = unit.split("/") if len(split) == 1: return unit elif split[0] == '1': return "{0}^".format(split[1]) + "{-1}" else: return "{0}*{1}^".format(split[0], split[1]) + "{-1}" def set_all_to_none(self): """ Set all mutable values to None for error handling purposes """ self.current_dataset = None self.current_datainfo = None self.output = [] def data_cleanup(self): """ Clean up the data sets and refresh everything :return: None """ self.remove_empty_q_values() self.send_to_output() # Combine datasets with DataInfo self.current_datainfo = DataInfo() # Reset DataInfo def remove_empty_q_values(self): """ Remove any point where Q == 0 """ if isinstance(self.current_dataset, plottable_1D): # Booleans for resolutions has_error_dx = self.current_dataset.dx is not None has_error_dxl = self.current_dataset.dxl is not None has_error_dxw = self.current_dataset.dxw is not None has_error_dy = self.current_dataset.dy is not None # Create arrays of zeros for non-existent resolutions if has_error_dxw and not has_error_dxl: array_size = self.current_dataset.dxw.size - 1 self.current_dataset.dxl = np.append(self.current_dataset.dxl, np.zeros([array_size])) has_error_dxl = True elif has_error_dxl and not has_error_dxw: array_size = self.current_dataset.dxl.size - 1 self.current_dataset.dxw = np.append(self.current_dataset.dxw, np.zeros([array_size])) has_error_dxw = True elif not has_error_dxl and not has_error_dxw and not has_error_dx: array_size = self.current_dataset.x.size - 1 self.current_dataset.dx = np.append(self.current_dataset.dx, np.zeros([array_size])) has_error_dx = True if not has_error_dy: array_size = self.current_dataset.y.size - 1 self.current_dataset.dy = np.append(self.current_dataset.dy, np.zeros([array_size])) has_error_dy = True # Remove points where q = 0 x = self.current_dataset.x self.current_dataset.x = self.current_dataset.x[x != 0] self.current_dataset.y = self.current_dataset.y[x != 0] if has_error_dy: self.current_dataset.dy = self.current_dataset.dy[x != 0] if has_error_dx: self.current_dataset.dx = self.current_dataset.dx[x != 0] if has_error_dxl: self.current_dataset.dxl = self.current_dataset.dxl[x != 0] if has_error_dxw: self.current_dataset.dxw = self.current_dataset.dxw[x != 0] elif isinstance(self.current_dataset, plottable_2D): has_error_dqx = self.current_dataset.dqx_data is not None has_error_dqy = self.current_dataset.dqy_data is not None has_error_dy = self.current_dataset.err_data is not None has_mask = self.current_dataset.mask is not None x = self.current_dataset.qx_data self.current_dataset.data = self.current_dataset.data[x != 0] self.current_dataset.qx_data = self.current_dataset.qx_data[x != 0] self.current_dataset.qy_data = self.current_dataset.qy_data[x != 0] self.current_dataset.q_data = np.sqrt( np.square(self.current_dataset.qx_data) + np.square( self.current_dataset.qy_data)) if has_error_dy: self.current_dataset.err_data = self.current_dataset.err_data[x != 0] if has_error_dqx: self.current_dataset.dqx_data = self.current_dataset.dqx_data[x != 0] if has_error_dqy: self.current_dataset.dqy_data = self.current_dataset.dqy_data[x != 0] if has_mask: self.current_dataset.mask = self.current_dataset.mask[x != 0] def reset_data_list(self, no_lines=0): """ Reset the plottable_1D object """ # Initialize data sets with arrays the maximum possible size x = np.zeros(no_lines) y = np.zeros(no_lines) dx = np.zeros(no_lines) dy = np.zeros(no_lines) self.current_dataset = plottable_1D(x, y, dx, dy) @staticmethod def splitline(line): """ Splits a line into pieces based on common delimeters :param line: A single line of text :return: list of values """ # Initial try for CSV (split on ,) toks = line.split(',') # Now try SCSV (split on ;) if len(toks) < 2: toks = line.split(';') # Now go for whitespace if len(toks) < 2: toks = line.split() return toks @abstractmethod def get_file_contents(self): """ Reader specific class to access the contents of the file All reader classes that inherit from FileReader must implement """ pass