1 | import sys |
---|
2 | import numpy |
---|
3 | |
---|
4 | |
---|
5 | def build_matrix(data, qx_data, qy_data): |
---|
6 | """ |
---|
7 | Build a matrix for 2d plot from a vector |
---|
8 | Returns a matrix (image) with ~ square binning |
---|
9 | Requirement: need 1d array formats of |
---|
10 | data, qx_data, and qy_data |
---|
11 | where each one corresponds to z, x, or y axis values |
---|
12 | |
---|
13 | """ |
---|
14 | # No qx or qy given in a vector format |
---|
15 | if qx_data == None or qy_data == None \ |
---|
16 | or qx_data.ndim != 1 or qy_data.ndim != 1: |
---|
17 | return data |
---|
18 | |
---|
19 | # maximum # of loops to fillup_pixels |
---|
20 | # otherwise, loop could never stop depending on data |
---|
21 | max_loop = 1 |
---|
22 | # get the x and y_bin arrays. |
---|
23 | x_bins, y_bins = get_bins(qx_data, qy_data) |
---|
24 | # set zero to None |
---|
25 | |
---|
26 | #Note: Can not use scipy.interpolate.Rbf: |
---|
27 | # 'cause too many data points (>10000)<=JHC. |
---|
28 | # 1d array to use for weighting the data point averaging |
---|
29 | #when they fall into a same bin. |
---|
30 | weights_data = numpy.ones([data.size]) |
---|
31 | # get histogram of ones w/len(data); this will provide |
---|
32 | #the weights of data on each bins |
---|
33 | weights, xedges, yedges = numpy.histogram2d(x=qy_data, |
---|
34 | y=qx_data, |
---|
35 | bins=[y_bins, x_bins], |
---|
36 | weights=weights_data) |
---|
37 | # get histogram of data, all points into a bin in a way of summing |
---|
38 | image, xedges, yedges = numpy.histogram2d(x=qy_data, |
---|
39 | y=qx_data, |
---|
40 | bins=[y_bins, x_bins], |
---|
41 | weights=data) |
---|
42 | # Now, normalize the image by weights only for weights>1: |
---|
43 | # If weight == 1, there is only one data point in the bin so |
---|
44 | # that no normalization is required. |
---|
45 | image[weights > 1] = image[weights > 1] / weights[weights > 1] |
---|
46 | # Set image bins w/o a data point (weight==0) as None (was set to zero |
---|
47 | # by histogram2d.) |
---|
48 | image[weights == 0] = None |
---|
49 | |
---|
50 | # Fill empty bins with 8 nearest neighbors only when at least |
---|
51 | #one None point exists |
---|
52 | loop = 0 |
---|
53 | |
---|
54 | # do while loop until all vacant bins are filled up up |
---|
55 | #to loop = max_loop |
---|
56 | while not(numpy.isfinite(image[weights == 0])).all(): |
---|
57 | if loop >= max_loop: # this protects never-ending loop |
---|
58 | break |
---|
59 | image = fillup_pixels(image=image, weights=weights) |
---|
60 | loop += 1 |
---|
61 | |
---|
62 | return image |
---|
63 | |
---|
64 | def get_bins(qx_data, qy_data): |
---|
65 | """ |
---|
66 | get bins |
---|
67 | return x_bins and y_bins: 1d arrays of the index with |
---|
68 | ~ square binning |
---|
69 | Requirement: need 1d array formats of |
---|
70 | qx_data, and qy_data |
---|
71 | where each one corresponds to x, or y axis values |
---|
72 | """ |
---|
73 | # No qx or qy given in a vector format |
---|
74 | if qx_data == None or qy_data == None \ |
---|
75 | or qx_data.ndim != 1 or qy_data.ndim != 1: |
---|
76 | return data |
---|
77 | |
---|
78 | # find max and min values of qx and qy |
---|
79 | xmax = qx_data.max() |
---|
80 | xmin = qx_data.min() |
---|
81 | ymax = qy_data.max() |
---|
82 | ymin = qy_data.min() |
---|
83 | |
---|
84 | # calculate the range of qx and qy: this way, it is a little |
---|
85 | # more independent |
---|
86 | x_size = xmax - xmin |
---|
87 | y_size = ymax - ymin |
---|
88 | |
---|
89 | # estimate the # of pixels on each axes |
---|
90 | npix_y = int(numpy.floor(numpy.sqrt(len(qy_data)))) |
---|
91 | npix_x = int(numpy.floor(len(qy_data) / npix_y)) |
---|
92 | |
---|
93 | # bin size: x- & y-directions |
---|
94 | xstep = x_size / (npix_x - 1) |
---|
95 | ystep = y_size / (npix_y - 1) |
---|
96 | |
---|
97 | # max and min taking account of the bin sizes |
---|
98 | xmax = xmax + xstep / 2.0 |
---|
99 | xmin = xmin - xstep / 2.0 |
---|
100 | ymax = ymax + ystep / 2.0 |
---|
101 | ymin = ymin - ystep / 2.0 |
---|
102 | |
---|
103 | # store x and y bin centers in q space |
---|
104 | x_bins = numpy.linspace(xmin, xmax, npix_x) |
---|
105 | y_bins = numpy.linspace(ymin, ymax, npix_y) |
---|
106 | |
---|
107 | #set x_bins and y_bins |
---|
108 | return x_bins, y_bins |
---|
109 | |
---|
110 | def fillup_pixels(image=None, weights=None): |
---|
111 | """ |
---|
112 | Fill z values of the empty cells of 2d image matrix |
---|
113 | with the average over up-to next nearest neighbor points |
---|
114 | |
---|
115 | :param image: (2d matrix with some zi = None) |
---|
116 | |
---|
117 | :return: image (2d array ) |
---|
118 | |
---|
119 | :TODO: Find better way to do for-loop below |
---|
120 | |
---|
121 | """ |
---|
122 | # No image matrix given |
---|
123 | if image == None or numpy.ndim(image) != 2 \ |
---|
124 | or numpy.isfinite(image).all() \ |
---|
125 | or weights == None: |
---|
126 | return image |
---|
127 | # Get bin size in y and x directions |
---|
128 | len_y = len(image) |
---|
129 | len_x = len(image[1]) |
---|
130 | temp_image = numpy.zeros([len_y, len_x]) |
---|
131 | weit = numpy.zeros([len_y, len_x]) |
---|
132 | # do for-loop for all pixels |
---|
133 | for n_y in range(len(image)): |
---|
134 | for n_x in range(len(image[1])): |
---|
135 | # find only null pixels |
---|
136 | if weights[n_y][n_x] > 0 or numpy.isfinite(image[n_y][n_x]): |
---|
137 | continue |
---|
138 | else: |
---|
139 | # find 4 nearest neighbors |
---|
140 | # check where or not it is at the corner |
---|
141 | if n_y != 0 and numpy.isfinite(image[n_y - 1][n_x]): |
---|
142 | temp_image[n_y][n_x] += image[n_y - 1][n_x] |
---|
143 | weit[n_y][n_x] += 1 |
---|
144 | if n_x != 0 and numpy.isfinite(image[n_y][n_x - 1]): |
---|
145 | temp_image[n_y][n_x] += image[n_y][n_x - 1] |
---|
146 | weit[n_y][n_x] += 1 |
---|
147 | if n_y != len_y - 1 and numpy.isfinite(image[n_y + 1][n_x]): |
---|
148 | temp_image[n_y][n_x] += image[n_y + 1][n_x] |
---|
149 | weit[n_y][n_x] += 1 |
---|
150 | if n_x != len_x - 1 and numpy.isfinite(image[n_y][n_x + 1]): |
---|
151 | temp_image[n_y][n_x] += image[n_y][n_x + 1] |
---|
152 | weit[n_y][n_x] += 1 |
---|
153 | # go 4 next nearest neighbors when no non-zero |
---|
154 | # neighbor exists |
---|
155 | if n_y != 0 and n_x != 0 and\ |
---|
156 | numpy.isfinite(image[n_y - 1][n_x - 1]): |
---|
157 | temp_image[n_y][n_x] += image[n_y - 1][n_x - 1] |
---|
158 | weit[n_y][n_x] += 1 |
---|
159 | if n_y != len_y - 1 and n_x != 0 and \ |
---|
160 | numpy.isfinite(image[n_y + 1][n_x - 1]): |
---|
161 | temp_image[n_y][n_x] += image[n_y + 1][n_x - 1] |
---|
162 | weit[n_y][n_x] += 1 |
---|
163 | if n_y != len_y and n_x != len_x - 1 and \ |
---|
164 | numpy.isfinite(image[n_y - 1][n_x + 1]): |
---|
165 | temp_image[n_y][n_x] += image[n_y - 1][n_x + 1] |
---|
166 | weit[n_y][n_x] += 1 |
---|
167 | if n_y != len_y - 1 and n_x != len_x - 1 and \ |
---|
168 | numpy.isfinite(image[n_y + 1][n_x + 1]): |
---|
169 | temp_image[n_y][n_x] += image[n_y + 1][n_x + 1] |
---|
170 | weit[n_y][n_x] += 1 |
---|
171 | |
---|
172 | # get it normalized |
---|
173 | ind = (weit > 0) |
---|
174 | image[ind] = temp_image[ind] / weit[ind] |
---|
175 | |
---|
176 | return image |
---|