source: sasview/src/sas/qtgui/Calculators/media/sas_calculator_help.rst

ESS_GUI
Last change on this file was 2f539b2, checked in by celinedurniak <celine.durniak@…>, 6 years ago

Updated documentation for generic sans calculator

  • Property mode set to 100755
File size: 5.7 KB
RevLine 
[ec392464]1.. sas_calculator_help.rst
2
3.. This is a port of the original SasView html help file to ReSTructured text
4.. by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
5
[da456fb]6.. _SANS_Calculator_Tool:
7
[a9dc4eb]8Generic SANS Calculator Tool
9============================
[ec392464]10
[a9dc4eb]11Description
12-----------
[ec392464]13
[a9dc4eb]14This tool attempts to simulate the SANS expected from a specified
15shape/structure or scattering length density profile. The tool can
16handle both nuclear and magnetic contributions to the scattering.
[850c753]17
[a9dc4eb]18Theory
19------
[ec392464]20
[5ed76f8]21In general, a particle with a volume $V$ can be described by an ensemble
22containing $N$ 3-dimensional rectangular pixels where each pixel is much
23smaller than $V$.
[ec392464]24
[5ed76f8]25Assuming that all the pixel sizes are the same, the elastic scattering
[2f539b2]26intensity from the particle is defined as
[ec392464]27
[6aad2e8]28.. image:: gen_i.png
[ec392464]29
[850c753]30Equation 1.
31
[5ed76f8]32where $\beta_j$ and $r_j$ are the scattering length density and
33the position of the $j^\text{th}$ pixel respectively.
[850c753]34
[2f539b2]35The total volume $V$ is equal to
[ec392464]36
[5ed76f8]37.. math::
[ec392464]38
[5ed76f8]39    V = \sum_j^N v_j
40
41for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\text{th}$
42pixel (or the $j^\text{th}$ natural atomic volume (= atomic mass / (natural molar
[850c753]43density * Avogadro number) for the atomic structures).
44
[2f539b2]45$V$ can be corrected by users (input parameter `Total volume`). This correction
46is useful especially for an atomic structure (such as taken from a PDB file)
47to get the right normalization.
[850c753]48
[2f539b2]49*NOTE! $\beta_j$ displayed in the GUI may be incorrect (input parameter
50`solvent_SLD`) but this will not affect the scattering computation if the
51correction of the total volume V is made.*
[850c753]52
[5ed76f8]53The scattering length density (SLD) of each pixel, where the SLD is uniform, is
54a combination of the nuclear and magnetic SLDs and depends on the spin states
[850c753]55of the neutrons as follows.
56
[a9dc4eb]57Magnetic Scattering
58^^^^^^^^^^^^^^^^^^^
[850c753]59
[5ed76f8]60For magnetic scattering, only the magnetization component, $M_\perp$,
61perpendicular to the scattering vector $Q$ contributes to the magnetic
[850c753]62scattering length.
[ec392464]63
[6aad2e8]64.. image:: mag_vector.png
[ec392464]65
66The magnetic scattering length density is then
67
[6aad2e8]68.. image:: dm_eq.png
[ec392464]69
[5ed76f8]70where the gyromagnetic ratio is $\gamma = -1.913$, $\mu_B$ is the Bohr
71magneton, $r_0$ is the classical radius of electron, and $\sigma$ is the
[850c753]72Pauli spin.
[ec392464]73
[850c753]74For a polarized neutron, the magnetic scattering is depending on the spin states.
[ec392464]75
[5ed76f8]76Let us consider that the incident neutrons are polarised both parallel (+) and
77anti-parallel (-) to the x' axis (see below). The possible states after
78scattering from the sample are then
[ec392464]79
[850c753]80*  Non-spin flips: (+ +) and (- -)
81*  Spin flips:     (+ -) and (- +)
[ec392464]82
[6aad2e8]83.. image:: gen_mag_pic.png
[ec392464]84
[5ed76f8]85Now let us assume that the angles of the *Q* vector and the spin-axis (x')
86to the x-axis are $\phi$ and $\theta_\text{up}$ respectively (see above). Then,
87depending upon the polarization (spin) state of neutrons, the scattering
88length densities, including the nuclear scattering length density ($\beta_N$)
[850c753]89are given as
[ec392464]90
[850c753]91*  for non-spin-flips
[ec392464]92
[6aad2e8]93   .. image:: sld1.png
[ec392464]94
[850c753]95*  for spin-flips
96
[6aad2e8]97   .. image:: sld2.png
[ec392464]98
99where
100
[6aad2e8]101.. image:: mxp.png
[ec392464]102
[2f539b2]103
104
[6aad2e8]105.. image:: myp.png
[ec392464]106
[2f539b2]107
108
[6aad2e8]109.. image:: mzp.png
[ec392464]110
[2f539b2]111
112
[6aad2e8]113.. image:: mqx.png
[ec392464]114
[2f539b2]115
116
[6aad2e8]117.. image:: mqy.png
[ec392464]118
[2f539b2]119Here the $M_{0x}$, $M_{0y}$ and $M_{0z}$ are the $x$, $y$ and $z$
[5ed76f8]120components of the magnetisation vector in the laboratory $xyz$ frame.
[ec392464]121
[2f539b2]122
123.. .. image:: Mxyzp.png
124
125
[ec392464]126.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
127
[a9dc4eb]128Using the tool
129--------------
[ec392464]130
[2f539b2]131.. figure:: gen_gui_help.png
132
133   ..
134
135   1) Load .sld, .txt, or .omf datafile
136   2) Select default shape of sample
137   3) Draw magnetization with arrows (not recommended for a large number of
138      pixels).
139   4) Ratio of (+/total) neutrons after analyser
140   5) Ratio of (+/total) neutrons before sample
141   6) Polarization angle in degrees
142   7) Default volume calculated from the pixel info
143      (or natural density of pdf file)
144   8) Compute the scattering pattern
145   9) Reset GUI to initial state
146   10) Display mean values or enter a new value if enabled
147   11) Save the sld data as sld format
148
149.. After computation the result will appear in the *Theory* box in the SasView
[850c753]150*Data Explorer* panel.
151
[5ed76f8]152*Up_frac_in* and *Up_frac_out* are the ratio
[ec392464]153
[850c753]154   (spin up) / (spin up + spin down)
[5ed76f8]155
[850c753]156of neutrons before the sample and at the analyzer, respectively.
[ec392464]157
[2f539b2]158*NOTE 1. The values of Up_frac_in and Up_frac_out must be in the range
[850c753]1590.0 to 1.0. Both values are 0.5 for unpolarized neutrons.*
[ec392464]160
[5ed76f8]161*NOTE 2. This computation is totally based on the pixel (or atomic) data fixed
[850c753]162in xyz coordinates. No angular orientational averaging is considered.*
163
[5ed76f8]164*NOTE 3. For the nuclear scattering length density, only the real component
[2f539b2]165is taken into account.*
[ec392464]166
167.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
168
[a9dc4eb]169Using PDB/OMF or SLD files
170--------------------------
[ec392464]171
[a9dc4eb]172The SANS Calculator tool can read some PDB, OMF or SLD files but ignores
[5ed76f8]173polarized/magnetic scattering when doing so, thus related parameters such as
[850c753]174*Up_frac_in*, etc, will be ignored.
[ec392464]175
[5ed76f8]176The calculation for fixed orientation uses Equation 1 above resulting in a 2D
177output, whereas the scattering calculation averaged over all the orientations
[850c753]178uses the Debye equation below providing a 1D output
[ec392464]179
[6aad2e8]180.. image:: gen_debye_eq.png
[ec392464]181
[5ed76f8]182where $v_j \beta_j \equiv b_j$ is the scattering
[2f539b2]183length of the $j^\text{th}$ atom.
184.. The calculation output is passed to the *Data Explorer*
[850c753]185for further use.
[ec392464]186
[2f539b2]187.. figure:: pdb_combo.png
188
189   ..
190
191   1) PDB file loaded
192   2) disabled input for *Up_frac_in*, *Up_frac_oupt*, *Up_theta*
193   3) option to perform the calculations using "Fixed orientations" (2D output)
194      or "Averaging over all orientations using Debye equation" (1D output).
195      This choice is only available for PDB files.
196
197
[850c753]198
199.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
200
[a9dc4eb]201.. note::  This help document was last changed by Steve King, 01May2015
Note: See TracBrowser for help on using the repository browser.