source: sasview/src/sas/perspectives/fitting/media/pd_help.rst @ 3db44fb

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 3db44fb was f256d9b, checked in by smk78, 10 years ago

Proof read.

  • Property mode set to 100644
File size: 6.0 KB
RevLine 
[da53353]1.. pd_help.rst
2
3.. This is a port of the original SasView html help file to ReSTructured text
4.. by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
5
6.. |beta| unicode:: U+03B2
7.. |gamma| unicode:: U+03B3
8.. |mu| unicode:: U+03BC
9.. |sigma| unicode:: U+03C3
10.. |phi| unicode:: U+03C6
11.. |theta| unicode:: U+03B8
12.. |chi| unicode:: U+03C7
[f256d9b]13.. |Ang| unicode:: U+212B
[da53353]14
15.. |inlineimage004| image:: sm_image004.gif
16.. |inlineimage005| image:: sm_image005.gif
17.. |inlineimage008| image:: sm_image008.gif
18.. |inlineimage009| image:: sm_image009.gif
19.. |inlineimage010| image:: sm_image010.gif
20.. |inlineimage011| image:: sm_image011.gif
21.. |inlineimage012| image:: sm_image012.gif
22.. |inlineimage018| image:: sm_image018.gif
23.. |inlineimage019| image:: sm_image019.gif
24
25
26.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
27
28Polydispersity Distributions
29----------------------------
30
[f256d9b]31With some models SasView can calculate the average form factor for a population
32of particles that exhibit size and/or orientational polydispersity. The resultant
33form factor is normalized by the average particle volume such that
[da53353]34
[f256d9b]35*P(q) = scale* * \ <F*\F> / *V + bkg*
[da53353]36
[f256d9b]37where F is the scattering amplitude and the \<\> denote an average over the size
38distribution.
[da53353]39
[f256d9b]40Users should note that this computation is very intensive. Applying polydispersion
41to multiple parameters at the same time, or increasing the number of *Npts* values
42in the fit, will require patience! However, the calculations are generally more
43robust with more data points or more angles.
[da53353]44
[f256d9b]45SasView uses the term *PD* for a size distribution (and not to be confused with a
46molecular weight distributions in polymer science) and the term *Sigma* for an
47angular distribution.
48
49The following five distribution functions are provided:
[da53353]50
[a0637de]51*  *Rectangular Distribution*
52*  *Gaussian Distribution*
53*  *Lognormal Distribution*
54*  *Schulz Distribution*
[f256d9b]55*  *Array Distribution*
[da53353]56
[a0637de]57.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]58
59Rectangular Distribution
[892a2cc]60^^^^^^^^^^^^^^^^^^^^^^^^
[da53353]61
[f256d9b]62The Rectangular Distribution is defined as
63
[da53353]64.. image:: pd_image001.png
65
[f256d9b]66where *xmean* is the mean of the distribution, *w* is the half-width, and *Norm* is a
67normalization factor which is determined during the numerical calculation.
68
69Note that the standard deviation and the half width *w* are different!
[da53353]70
71The standard deviation is
72
73.. image:: pd_image002.png
74
[f256d9b]75whilst the polydispersity is
[da53353]76
77.. image:: pd_image003.png
78
79.. image:: pd_image004.jpg
80
[a0637de]81.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]82
83Gaussian Distribution
[892a2cc]84^^^^^^^^^^^^^^^^^^^^^
[da53353]85
[f256d9b]86The Gaussian Distribution is defined as
87
[da53353]88.. image:: pd_image005.png
89
[f256d9b]90where *xmean* is the mean of the distribution and *Norm* is a normalization factor
[da53353]91which is determined during the numerical calculation.
92
[f256d9b]93The polydispersity is
[da53353]94
95.. image:: pd_image003.png
96
[f256d9b]97
[da53353]98.. image:: pd_image006.jpg
99
[a0637de]100.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]101
102Lognormal Distribution
[892a2cc]103^^^^^^^^^^^^^^^^^^^^^^
[da53353]104
[f256d9b]105The Lognormal Distribution is defined as
106
[da53353]107.. image:: pd_image007.png
108
[f256d9b]109where |mu|\ =ln(*xmed*), *xmed* is the median value of the distribution, and
110*Norm* is a normalization factor which will be determined during the numerical
111calculation.
112
113The median value for the distribution will be the value given for the respective
114size parameter in the *Fitting Perspective*, for example, radius = 60.
[da53353]115
[f256d9b]116The polydispersity is given by |sigma|
[da53353]117
118.. image:: pd_image008.png
119
120For the angular distribution
121
122.. image:: pd_image009.png
123
[f256d9b]124The mean value is given by *xmean*\ =exp(|mu|\ +p\ :sup:`2`\ /2). The peak value
125is given by *xpeak*\ =exp(|mu|-p\ :sup:`2`\ ).
[da53353]126
127.. image:: pd_image010.jpg
128
[f256d9b]129This distribution function spreads more, and the peak shifts to the left, as *p*
130increases, requiring higher values of Nsigmas and Npts.
[da53353]131
[a0637de]132.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]133
134Schulz Distribution
[892a2cc]135^^^^^^^^^^^^^^^^^^^
[da53353]136
[f256d9b]137The Schulz distribution is defined as
138
[da53353]139.. image:: pd_image011.png
140
[f256d9b]141where *xmean* is the mean of the distribution and *Norm* is a normalization factor
142which is determined during the numerical calculation, and *z* is a measure of the
143width of the distribution such that
[da53353]144
[f256d9b]145z = (1-p\ :sup:`2`\ ) / p\ :sup:`2`
[da53353]146
[f256d9b]147The polydispersity is
[da53353]148
149.. image:: pd_image012.png
150
[f256d9b]151Note that larger values of PD might need larger values of Npts and Nsigmas.
152For example, at PD=0.7 and radius=60 |Ang|, Npts>=160 and Nsigmas>=15 at least.
[da53353]153
154.. image:: pd_image013.jpg
155
[f256d9b]156For further information on the Schulz distribution see:
157M Kotlarchyk & S-H Chen, *J Chem Phys*, (1983), 79, 2461.
158
[da53353]159.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[f256d9b]160
161Array Distribution
162^^^^^^^^^^^^^^^^^^
163
164This user-definable distribution should be given as as a simple ASCII text file
165where the array is defined by two columns of numbers: *x* and *f(x)*. The *f(x)*
166will be normalized by SasView during the computation.
167
168Example of what an array distribution file should look like:
169
170====  =====
171 30    0.1
172 32    0.3
173 35    0.4
174 36    0.5
175 37    0.6
176 39    0.7
177 41    0.9
178====  =====
179
180SasView only uses these array values during the computation, therefore any mean
181value of the parameter represented by *x* present in the *Fitting Perspective*
182will be ignored.
183
184.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
185
186Note about DLS polydispersity
187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
188
189Many commercial Dynamic Light Scattering (DLS) instruments produce a size
190polydispersity parameter, sometimes even given the symbol *p*! This parameter is
191defined as the relative standard deviation coefficient of variation of the size
192distribution and is NOT the same as the polydispersity parameters in the Lognormal
193and Schulz distributions above (though they all related) except when the DLS
194polydispersity parameter is <0.13.
195
196For more information see:
197S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143
198
199.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
200
201.. note::  This help document was last changed by Steve King, 01May2015
Note: See TracBrowser for help on using the repository browser.