""" Define the resolution functions for the data. This defines classes for 1D and 2D resolution calculations. """ from __future__ import division from scipy.special import erf from numpy import sqrt, log, log10 import numpy as np MINIMUM_RESOLUTION = 1e-8 class Resolution1D(object): """ Abstract base class defining a 1D resolution function. *q* is the set of q values at which the data is measured. *q_calc* is the set of q values at which the theory needs to be evaluated. This may extend and interpolate the q values. *apply* is the method to call with I(q_calc) to compute the resolution smeared theory I(q). """ q = None q_calc = None def apply(self, theory): """ Smear *theory* by the resolution function, returning *Iq*. """ raise NotImplementedError("Subclass does not define the apply function") class Perfect1D(Resolution1D): """ Resolution function to use when there is no actual resolution smearing to be applied. It has the same interface as the other resolution functions, but returns the identity function. """ def __init__(self, q): self.q_calc = self.q = q def apply(self, theory): return theory class Pinhole1D(Resolution1D): r""" Pinhole aperture with q-dependent gaussian resolution. *q* points at which the data is measured. *q_width* gaussian 1-sigma resolution at each data point. *q_calc* is the list of points to calculate, or None if this should be estimated from the *q* and *q_width*. """ def __init__(self, q, q_width, q_calc=None, nsigma=3): #*min_step* is the minimum point spacing to use when computing the #underlying model. It should be on the order of #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes #are computed with sufficient density to avoid aliasing effects. # Protect against calls with q_width=0. The extend_q function will # not extend the q if q_width is 0, but q_width must be non-zero when # constructing the weight matrix to avoid division by zero errors. # In practice this should never be needed, since resolution should # default to Perfect1D if the pinhole geometry is not defined. self.q, self.q_width = q, q_width self.q_calc = pinhole_extend_q(q, q_width, nsigma=nsigma) \ if q_calc is None else np.sort(q_calc) self.weight_matrix = pinhole_resolution(self.q_calc, self.q, np.maximum(q_width, MINIMUM_RESOLUTION)) def apply(self, theory): return apply_resolution_matrix(self.weight_matrix, theory) class Slit1D(Resolution1D): """ Slit aperture with a complicated resolution function. *q* points at which the data is measured. *qx_width* slit width *qy_height* slit height *q_calc* is the list of points to calculate, or None if this should be estimated from the *q* and *q_width*. The *weight_matrix* is computed by :func:`slit1d_resolution` """ def __init__(self, q, width, height, q_calc=None): # TODO: maybe issue warnings rather than raising errors if not np.isscalar(width): if np.any(np.diff(width) > 0.0): raise ValueError("Slit resolution requires fixed width slits") width = width[0] if not np.isscalar(height): if np.any(np.diff(height) > 0.0): raise ValueError("Slit resolution requires fixed height slits") height = height[0] # Remember what width/height was used even though we won't need them # after the weight matrix is constructed self.width, self.height = width, height self.q = q.flatten() self.q_calc = slit_extend_q(q, width, height) \ if q_calc is None else np.sort(q_calc) self.weight_matrix = \ slit_resolution(self.q_calc, self.q, width, height) def apply(self, theory): return apply_resolution_matrix(self.weight_matrix, theory) def apply_resolution_matrix(weight_matrix, theory): """ Apply the resolution weight matrix to the computed theory function. """ #print "apply shapes", theory.shape, weight_matrix.shape Iq = np.dot(theory[None,:], weight_matrix) #print "result shape",Iq.shape return Iq.flatten() def pinhole_resolution(q_calc, q, q_width): """ Compute the convolution matrix *W* for pinhole resolution 1-D data. Each row *W[i]* determines the normalized weight that the corresponding points *q_calc* contribute to the resolution smeared point *q[i]*. Given *W*, the resolution smearing can be computed using *dot(W,q)*. *q_calc* must be increasing. *q_width* must be greater than zero. """ # The current algorithm is a midpoint rectangle rule. In the test case, # neither trapezoid nor Simpson's rule improved the accuracy. edges = bin_edges(q_calc) edges[edges<0.0] = 0.0 # clip edges below zero G = erf( (edges[:,None] - q[None,:]) / (sqrt(2.0)*q_width)[None,:] ) weights = G[1:] - G[:-1] weights /= np.sum(weights, axis=0)[None,:] return weights def slit_resolution(q_calc, q, width, height): r""" Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given $q_v$ = *width* and $q_h$ = *height*. *width* and *height* are scalars since current instruments use the same slit settings for all measurement points. If slit height is large relative to width, use: .. math:: I_s(q_o) = \frac{1}{\Delta q_v} \int_0^{\Delta q_v} I(\sqrt{q_o^2 + u^2} du If slit width is large relative to height, use: .. math:: I_s(q_o) = \frac{1}{2 \Delta q_v} \int_{-\Delta q_v}^{\Delta q_v} I(u) du """ if width == 0.0 and height == 0.0: #print "condition zero" return 1 q_edges = bin_edges(q_calc) # Note: requires q > 0 q_edges[q_edges<0.0] = 0.0 # clip edges below zero #np.set_printoptions(linewidth=10000) if width <= 100.0 * height or height == 0: # The current algorithm is a midpoint rectangle rule. In the test case, # neither trapezoid nor Simpson's rule improved the accuracy. #print "condition h", q_edges.shape, q.shape, q_calc.shape weights = np.zeros((len(q), len(q_calc)), 'd') for i, qi in enumerate(q): weights[i, :] = np.diff(q_to_u(q_edges, qi)) weights /= width weights = weights.T else: #print "condition w" # Make q_calc into a row vector, and q into a column vector q, q_calc = q[None,:], q_calc[:,None] in_x = (q_calc >= q-width) * (q_calc <= q+width) weights = np.diff(q_edges)[:,None] * in_x return weights def pinhole_extend_q(q, q_width, nsigma=3): """ Given *q* and *q_width*, find a set of sampling points *q_calc* so that each point I(q) has sufficient support from the underlying function. """ q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width) return linear_extrapolation(q, q_min, q_max) def slit_extend_q(q, width, height): """ Given *q*, *width* and *height*, find a set of sampling points *q_calc* so that each point I(q) has sufficient support from the underlying function. """ height # keep lint happy q_min, q_max = np.min(q), np.max(np.sqrt(q**2 + width**2)) return geometric_extrapolation(q, q_min, q_max) def bin_edges(x): """ Determine bin edges from bin centers, assuming that edges are centered between the bins. Note: this uses the arithmetic mean, which may not be appropriate for log-scaled data. """ if len(x) < 2 or (np.diff(x)<0).any(): raise ValueError("Expected bins to be an increasing set") edges = np.hstack([ x[0] - 0.5*(x[1] - x[0]), # first point minus half first interval 0.5*(x[1:] + x[:-1]), # mid points of all central intervals x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval ]) return edges def q_to_u(q, q0): """ Convert *q* values to *u* values for the integral computed at *q0*. """ # array([value])**2 - value**2 is not always zero qpsq = q**2 - q0**2 qpsq[qpsq<0] = 0 return sqrt(qpsq) def interpolate(q, max_step): """ Returns *q_calc* with points spaced at most max_step apart. """ step = np.diff(q) index = step>max_step if np.any(index): inserts = [] for q_i,step_i in zip(q[:-1][index],step[index]): n = np.ceil(step_i/max_step) inserts.extend(q_i + np.arange(1,n)*(step_i/n)) # Extend a couple of fringes beyond the end of the data inserts.extend(q[-1] + np.arange(1,8)*max_step) q_calc = np.sort(np.hstack((q,inserts))) else: q_calc = q return q_calc def linear_extrapolation(q, q_min, q_max): """ Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as a guide. Extrapolation below uses about the same size as the first interval. Extrapolation above uses about the same size as the final interval. if *q_min* is zero or less then *q[0]/10* is used instead. """ q = np.sort(q) if q_min < q[0]: if q_min <= 0: q_min = q[0]/10 n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1]>q[0] else 15 q_low = np.linspace(q_min, q[0], n_low+1)[:-1] else: q_low = [] if q_max > q[-1]: n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1]>q[-2] else 15 q_high = np.linspace(q[-1], q_max, n_high+1)[1:] else: q_high = [] return np.concatenate([q_low, q, q_high]) def geometric_extrapolation(q, q_min, q_max, points_per_decade=None): r""" Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the average geometric step size in *q* as the step size. if *q_min* is zero or less then *q[0]/10* is used instead. *points_per_decade* sets the ratio between consecutive steps such that there will be $n$ points used for every factor of 10 increase in *q*. If *points_per_decade* is not given, it will be estimated as follows. Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$ in $n$ points gives a geometric average of: .. math:: \log \Delta q = (\log q_n - log q_1) / (n - 1) From this we can compute the number of steps required to extend $q$ from $q_n$ to $q_\text{max}$ by $\Delta q$ as: .. math:: n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q Substituting: n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n) / (\log q_n - log q_1) """ q = np.sort(q) if points_per_decade is None: log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0])) else: log_delta_q = log(10.) / points_per_decade if q_min < q[0]: if q_min < 0: q_min = q[0]/10 n_low = log_delta_q * (log(q[0])-log(q_min)) q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1] else: q_low = [] if q_max > q[-1]: n_high = log_delta_q * (log(q_max)-log(q[-1])) q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:] else: q_high = [] return np.concatenate([q_low, q, q_high]) ############################################################################ # unit tests ############################################################################ import unittest def eval_form(q, form, pars): from sasmodels import core kernel = core.make_kernel(form, [q]) theory = core.call_kernel(kernel, pars) kernel.release() return theory def gaussian(q, q0, dq): from numpy import exp, pi return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq) def romberg_slit_1d(q, delta_qv, form, pars): """ Romberg integration for slit resolution. This is an adaptive integration technique. It is called with settings that make it slow to evaluate but give it good accuracy. """ from scipy.integrate import romberg if any(k not in form.info['defaults'] for k in pars.keys()): keys = set(form.info['defaults'].keys()) extra = set(pars.keys()) - keys raise ValueError("bad parameters: [%s] not in [%s]"% (", ".join(sorted(extra)), ", ".join(sorted(keys)))) _fn = lambda u, q0: eval_form(sqrt(q0**2 + u**2), form, pars) r = [romberg(_fn, 0, delta_qv[0], args=(qi,), divmax=100, vec_func=True, tol=0, rtol=1e-8) for qi in q] # r should be [float, ...], but it is [array([float]), array([float]),...] return np.asarray(r).flatten()/delta_qv[0] def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5): """ Romberg integration for pinhole resolution. This is an adaptive integration technique. It is called with settings that make it slow to evaluate but give it good accuracy. """ from scipy.integrate import romberg if any(k not in form.info['defaults'] for k in pars.keys()): keys = set(form.info['defaults'].keys()) extra = set(pars.keys()) - keys raise ValueError("bad parameters: [%s] not in [%s]"% (", ".join(sorted(extra)), ", ".join(sorted(keys)))) _fn = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq) r = [romberg(_fn, max(qi-nsigma*dqi,1e-10*q[0]), qi+nsigma*dqi, args=(qi, dqi), divmax=100, vec_func=True, tol=0, rtol=1e-8) for qi,dqi in zip(q,q_width)] return np.asarray(r).flatten() class ResolutionTest(unittest.TestCase): def setUp(self): self.x = 0.001*np.arange(1, 11) self.y = self.Iq(self.x) def Iq(self, q): "Linear function for resolution unit test" return 12.0 - 1000.0*q def test_perfect(self): """ Perfect resolution and no smearing. """ resolution = Perfect1D(self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) np.testing.assert_equal(output, self.y) def test_slit_zero(self): """ Slit smearing with perfect resolution. """ resolution = Slit1D(self.x, width=0, height=0, q_calc=self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) np.testing.assert_equal(output, self.y) @unittest.skip("not yet supported") def test_slit_high(self): """ Slit smearing with height 0.005 """ resolution = Slit1D(self.x, width=0, height=0.005, q_calc=self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) answer = [ 9.0618, 8.6402, 8.1187, 7.1392, 6.1528, 5.5555, 4.5584, 3.5606, 2.5623, 2.0000 ] np.testing.assert_allclose(output, answer, atol=1e-4) @unittest.skip("not yet supported") def test_slit_both_high(self): """ Slit smearing with width < 100*height. """ q = np.logspace(-4, -1, 10) resolution = Slit1D(q, width=0.2, height=np.inf) theory = 1000*self.Iq(resolution.q_calc**4) output = resolution.apply(theory) answer = [ 8.85785, 8.43012, 7.92687, 6.94566, 6.03660, 5.40363, 4.40655, 3.40880, 2.41058, 2.00000 ] np.testing.assert_allclose(output, answer, atol=1e-4) @unittest.skip("not yet supported") def test_slit_wide(self): """ Slit smearing with width 0.0002 """ resolution = Slit1D(self.x, width=0.0002, height=0, q_calc=self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) answer = [ 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0 ] np.testing.assert_allclose(output, answer, atol=1e-4) @unittest.skip("not yet supported") def test_slit_both_wide(self): """ Slit smearing with width > 100*height. """ resolution = Slit1D(self.x, width=0.0002, height=0.000001, q_calc=self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) answer = [ 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0 ] np.testing.assert_allclose(output, answer, atol=1e-4) def test_pinhole_zero(self): """ Pinhole smearing with perfect resolution """ resolution = Pinhole1D(self.x, 0.0*self.x) theory = self.Iq(resolution.q_calc) output = resolution.apply(theory) np.testing.assert_equal(output, self.y) def test_pinhole(self): """ Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001] """ resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x), q_calc=self.x) theory = 12.0-1000.0*resolution.q_calc output = resolution.apply(theory) answer = [ 10.44785079, 9.84991299, 8.98101708, 7.99906585, 6.99998311, 6.00001689, 5.00093415, 4.01898292, 3.15008701, 2.55214921] np.testing.assert_allclose(output, answer, atol=1e-8) class IgorComparisonTest(unittest.TestCase): def setUp(self): self.pars = TEST_PARS_PINHOLE_SPHERE from sasmodels import core from sasmodels.models import sphere self.model = core.load_model(sphere, dtype='double') def Iq_sphere(self, pars, resolution): from sasmodels import core kernel = core.make_kernel(self.model, [resolution.q_calc]) theory = core.call_kernel(kernel, pars) result = resolution.apply(theory) kernel.release() return result def compare(self, q, output, answer, tolerance): err = (output - answer)/answer idx = abs(err) >= tolerance problem = zip(q[idx], output[idx], answer[idx], err[idx]) print "\n".join(str(v) for v in problem) np.testing.assert_allclose(output, answer, rtol=tolerance) def test_perfect(self): """ Compare sphere model with NIST Igor SANS, no resolution smearing. """ pars = TEST_PARS_SLIT_SPHERE data_string = TEST_DATA_SLIT_SPHERE data = np.loadtxt(data_string.split('\n')).T q, width, answer, _ = data resolution = Perfect1D(q) output = self.Iq_sphere(pars, resolution) self.compare(q, output, answer, 1e-6) def test_pinhole(self): """ Compare pinhole resolution smearing with NIST Igor SANS """ pars = TEST_PARS_PINHOLE_SPHERE data_string = TEST_DATA_PINHOLE_SPHERE data = np.loadtxt(data_string.split('\n')).T q, q_width, answer = data resolution = Pinhole1D(q, q_width) output = self.Iq_sphere(pars, resolution) # TODO: relative error should be lower self.compare(q, output, answer, 3e-4) def test_pinhole_romberg(self): """ Compare pinhole resolution smearing with romberg integration result. """ pars = TEST_PARS_PINHOLE_SPHERE data_string = TEST_DATA_PINHOLE_SPHERE pars['radius'] *= 5 radius = pars['radius'] data = np.loadtxt(data_string.split('\n')).T q, q_width, answer = data answer = romberg_pinhole_1d(q, q_width, self.model, pars) ## Getting 0.1% requires 5 sigma and 200 points per fringe #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5), # 2*np.pi/radius/200) #tol = 0.001 ## The default 3 sigma and no extra points gets 1% q_calc, tol = None, 0.01 resolution = Pinhole1D(q, q_width, q_calc=q_calc) output = self.Iq_sphere(pars, resolution) if 0: # debug plot import matplotlib.pyplot as plt resolution = Perfect1D(q) source = self.Iq_sphere(pars, resolution) plt.loglog(q, source, '.') plt.loglog(q, answer, '-', hold=True) plt.loglog(q, output, '-', hold=True) plt.show() self.compare(q, output, answer, tol) def test_slit(self): """ Compare slit resolution smearing with NIST Igor SANS """ pars = TEST_PARS_SLIT_SPHERE data_string = TEST_DATA_SLIT_SPHERE data = np.loadtxt(data_string.split('\n')).T q, delta_qv, _, answer = data resolution = Slit1D(q, width=delta_qv, height=0) output = self.Iq_sphere(pars, resolution) # TODO: eliminate Igor test since it is too inaccurate to be useful. # This means we can eliminate the test data as well, and instead # use a generated q vector. self.compare(q, output, answer, 0.5) def test_slit_romberg(self): """ Compare slit resolution smearing with romberg integration result. """ pars = TEST_PARS_SLIT_SPHERE data_string = TEST_DATA_SLIT_SPHERE radius = pars['radius'] data = np.loadtxt(data_string.split('\n')).T q, delta_qv, _, answer = data answer = romberg_slit_1d(q, delta_qv, self.model, pars) q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20), delta_qv[0], delta_qv[0]) resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc) output = self.Iq_sphere(pars, resolution) # TODO: relative error should be lower self.compare(q, output, answer, 0.025) def test_ellipsoid(self): """ Compare romberg integration for ellipsoid model. """ from .core import load_model pars = { 'scale':0.05, 'rpolar':500, 'requatorial':15000, 'sld':6, 'solvent_sld': 1, } form = load_model('ellipsoid', dtype='double') q = np.logspace(log10(4e-5),log10(2.5e-2), 68) delta_qv = [0.117] resolution = Slit1D(q, width=delta_qv, height=0) answer = romberg_slit_1d(q, delta_qv, form, pars) output = resolution.apply(eval_form(resolution.q_calc, form, pars)) # TODO: 10% is too much error; use better algorithm self.compare(q, output, answer, 0.1) #TODO: can sas q spacing be too sparse for the resolution calculation? @unittest.skip("suppress sparse data test; not supported by current code") def test_pinhole_sparse(self): """ Compare pinhole resolution smearing with NIST Igor SANS on sparse data """ pars = TEST_PARS_PINHOLE_SPHERE data_string = TEST_DATA_PINHOLE_SPHERE data = np.loadtxt(data_string.split('\n')).T q, q_width, answer = data[:, ::20] # Take every nth point resolution = Pinhole1D(q, q_width) output = self.Iq_sphere(pars, resolution) self.compare(q, output, answer, 1e-6) # pinhole sphere parameters TEST_PARS_PINHOLE_SPHERE = { 'scale': 1.0, 'background': 0.01, 'radius': 60.0, 'sld': 1, 'solvent_sld': 6.3, } # Q, dQ, I(Q) calculated by NIST Igor SANS package TEST_DATA_PINHOLE_SPHERE = """\ 0.001278 0.0002847 2538.41176383 0.001562 0.0002905 2536.91820405 0.001846 0.0002956 2535.13182479 0.002130 0.0003017 2533.06217813 0.002414 0.0003087 2530.70378586 0.002698 0.0003165 2528.05024192 0.002982 0.0003249 2525.10408349 0.003266 0.0003340 2521.86667499 0.003550 0.0003437 2518.33907750 0.003834 0.0003539 2514.52246995 0.004118 0.0003646 2510.41798319 0.004402 0.0003757 2506.02690988 0.004686 0.0003872 2501.35067884 0.004970 0.0003990 2496.38678318 0.005253 0.0004112 2491.16237596 0.005537 0.0004237 2485.63911673 0.005821 0.0004365 2479.83657083 0.006105 0.0004495 2473.75676948 0.006389 0.0004628 2467.40145990 0.006673 0.0004762 2460.77293372 0.006957 0.0004899 2453.86724627 0.007241 0.0005037 2446.69623838 0.007525 0.0005177 2439.25775219 0.007809 0.0005318 2431.55421398 0.008093 0.0005461 2423.58785521 0.008377 0.0005605 2415.36158137 0.008661 0.0005750 2406.87009473 0.008945 0.0005896 2398.12841186 0.009229 0.0006044 2389.13360806 0.009513 0.0006192 2379.88958042 0.009797 0.0006341 2370.39776774 0.010080 0.0006491 2360.69528793 0.010360 0.0006641 2350.85169027 0.010650 0.0006793 2340.42023633 0.010930 0.0006945 2330.11206013 0.011220 0.0007097 2319.20109972 0.011500 0.0007251 2308.43503981 0.011780 0.0007404 2297.44820179 0.012070 0.0007558 2285.83853677 0.012350 0.0007713 2274.41290746 0.012640 0.0007868 2262.36219581 0.012920 0.0008024 2250.51169731 0.013200 0.0008180 2238.45596231 0.013490 0.0008336 2225.76495666 0.013770 0.0008493 2213.29618391 0.014060 0.0008650 2200.19110751 0.014340 0.0008807 2187.34050325 0.014620 0.0008965 2174.30529864 0.014910 0.0009123 2160.61632548 0.015190 0.0009281 2147.21038112 0.015470 0.0009440 2133.62023580 0.015760 0.0009598 2119.37907426 0.016040 0.0009757 2105.45234903 0.016330 0.0009916 2090.86319102 0.016610 0.0010080 2076.60576032 0.016890 0.0010240 2062.19214565 0.017180 0.0010390 2047.10550219 0.017460 0.0010550 2032.38715621 0.017740 0.0010710 2017.52560123 0.018030 0.0010880 2001.99124318 0.018310 0.0011040 1986.84662060 0.018600 0.0011200 1971.03389745 0.018880 0.0011360 1955.61395119 0.019160 0.0011520 1940.08291563 0.019450 0.0011680 1923.87672225 0.019730 0.0011840 1908.10656374 0.020020 0.0012000 1891.66297192 0.020300 0.0012160 1875.66789021 0.020580 0.0012320 1859.56357196 0.020870 0.0012490 1842.79468290 0.021150 0.0012650 1826.50064489 0.021430 0.0012810 1810.11533702 0.021720 0.0012970 1793.06840882 0.022000 0.0013130 1776.51153580 0.022280 0.0013290 1759.87201249 0.022570 0.0013460 1742.57354412 0.022850 0.0013620 1725.79397319 0.023140 0.0013780 1708.35831550 0.023420 0.0013940 1691.45256069 0.023700 0.0014110 1674.48561783 0.023990 0.0014270 1656.86525366 0.024270 0.0014430 1639.79847285 0.024550 0.0014590 1622.68887088 0.024840 0.0014760 1604.96421100 0.025120 0.0014920 1587.85768129 0.025410 0.0015080 1569.99297335 0.025690 0.0015240 1552.84580279 0.025970 0.0015410 1535.54074115 0.026260 0.0015570 1517.75249337 0.026540 0.0015730 1500.40115023 0.026820 0.0015900 1483.03632237 0.027110 0.0016060 1465.05942429 0.027390 0.0016220 1447.67682181 0.027670 0.0016390 1430.46495191 0.027960 0.0016550 1412.49232282 0.028240 0.0016710 1395.13182318 0.028520 0.0016880 1377.93439837 0.028810 0.0017040 1359.99528971 0.029090 0.0017200 1342.67274512 0.029370 0.0017370 1325.55375609 """ # Slit sphere parameters TEST_PARS_SLIT_SPHERE = { 'scale': 0.01, 'background': 0.01, 'radius': 60000, 'sld': 1, 'solvent_sld': 4, } # Q dQ I(Q) I_smeared(Q) TEST_DATA_SLIT_SPHERE = """\ 2.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06 2.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06 2.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06 3.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06 3.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05 3.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05 4.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05 5.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05 5.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05 6.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04 6.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04 7.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04 7.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04 8.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04 8.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04 9.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04 1.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04 1.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04 1.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04 1.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03 1.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03 1.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03 1.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03 1.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03 1.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03 1.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03 2.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03 2.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03 2.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03 2.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03 2.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03 2.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03 2.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03 2.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02 3.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02 3.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02 3.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02 3.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02 4.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02 4.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02 4.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02 4.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02 5.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02 5.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01 6.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01 6.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01 7.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01 7.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01 8.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01 8.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01 9.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01 9.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01 1.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01 1.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01 1.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00 1.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00 1.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00 1.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00 1.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00 1.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00 1.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00 1.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00 2.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00 2.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00 2.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00 2.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00 2.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00 2.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00 """ def main(): """ Run tests given is sys.argv. Returns 0 if success or 1 if any tests fail. """ import sys import xmlrunner suite = unittest.TestSuite() suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__])) runner = xmlrunner.XMLTestRunner(output='logs') result = runner.run(suite) return 1 if result.failures or result.errors else 0 ############################################################################ # usage demo ############################################################################ def _eval_demo_1d(resolution, title): from sasmodels import core from sasmodels.models import cylinder ## or alternatively: # cylinder = core.load_model_definition('cylinder') model = core.load_model(cylinder) kernel = core.make_kernel(model, [resolution.q_calc]) theory = core.call_kernel(kernel, {'length':210, 'radius':500}) Iq = resolution.apply(theory) import matplotlib.pyplot as plt plt.loglog(resolution.q_calc, theory, label='unsmeared') plt.loglog(resolution.q, Iq, label='smeared', hold=True) plt.legend() plt.title(title) plt.xlabel("Q (1/Ang)") plt.ylabel("I(Q) (1/cm)") def demo_pinhole_1d(): q = np.logspace(-3, -1, 400) q_width = 0.1*q resolution = Pinhole1D(q, q_width) _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution") def demo_slit_1d(): q = np.logspace(-3, -1, 400) qx_width = 0.005 qy_width = 0.0 resolution = Slit1D(q, qx_width, qy_width) _eval_demo_1d(resolution, title="0.005 Qx Slit Resolution") def demo(): import matplotlib.pyplot as plt plt.subplot(121) demo_pinhole_1d() plt.subplot(122) demo_slit_1d() plt.show() if __name__ == "__main__": #demo() main()