/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * */ #include #include "parameters.hh" #include using namespace std; #include "sc.h" extern "C" { #include "libSphere.h" } // Convenience structure typedef struct { double scale; double dnn; double d_factor; double radius; double sldSph; double sldSolv; double background; double theta; double phi; double psi; } SCParameters; /** * Function to evaluate 2D scattering function * @param pars: parameters of the SCCrystalModel * @param q: q-value * @param q_x: q_x / q * @param q_y: q_y / q * @return: function value */ static double sc_analytical_2D_scaled(SCParameters *pars, double q, double q_x, double q_y) { double a3_x, a3_y, a2_x, a2_y, a1_x, a1_y; //, a3_z double q_z; double cos_val_a3, cos_val_a2, cos_val_a1; double a1_dot_q, a2_dot_q,a3_dot_q; double answer; double Pi = 4.0*atan(1.0); double aa, Da, qDa_2, latticeScale, Zq; double dp[5]; //convert angle degree to radian double theta = pars->theta * Pi/180.0; double phi = pars->phi * Pi/180.0; double psi = pars->psi * Pi/180.0; dp[0] = 1.0; dp[1] = pars->radius; dp[2] = pars->sldSph; dp[3] = pars->sldSolv; dp[4] = 0.0; aa = pars->dnn; Da = pars->d_factor*aa; qDa_2 = pow(q*Da,2.0); latticeScale = (4.0/3.0)*Pi*(dp[1]*dp[1]*dp[1])/pow(aa,3.0); /// Angles here are respect to detector coordinate instead of against q coordinate(PRB 36, 3, 1754) // a3 axis orientation a3_x = cos(theta) * cos(phi); a3_y = sin(theta); //a3_z = -cos(theta) * sin(phi); // q vector q_z = 0.0; // Compute the angle btw vector q and the a3 axis cos_val_a3 = a3_x*q_x + a3_y*q_y;// + a3_z*q_z; // a1 axis orientation a1_x = -cos(phi)*sin(psi) * sin(theta)+sin(phi)*cos(psi); a1_y = sin(psi)*cos(theta); cos_val_a1 = a1_x*q_x + a1_y*q_y; // a2 axis orientation a2_x = -sin(theta)*cos(psi)*cos(phi)-sin(psi)*sin(phi); a2_y = cos(theta)*cos(psi); // a2 axis cos_val_a2 = a2_x*q_x + a2_y*q_y; // The following test should always pass if (fabs(cos_val_a3)>1.0) { //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); cos_val_a3 = 1.0; } if (fabs(cos_val_a1)>1.0) { //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); cos_val_a1 = 1.0; } if (fabs(cos_val_a2)>1.0) { //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); cos_val_a3 = 1.0; } a3_dot_q = aa*q*cos_val_a3; a1_dot_q = aa*q*cos_val_a1;//*sin(alpha); a2_dot_q = aa*q*cos_val_a2; // Call Zq=Z1*Z2*Z3 Zq = (1.0-exp(-qDa_2))/(1.0-2.0*exp(-0.5*qDa_2)*cos(a1_dot_q)+exp(-qDa_2)); Zq *= (1.0-exp(-qDa_2))/(1.0-2.0*exp(-0.5*qDa_2)*cos(a2_dot_q)+exp(-qDa_2)); Zq *= (1.0-exp(-qDa_2))/(1.0-2.0*exp(-0.5*qDa_2)*cos(a3_dot_q)+exp(-qDa_2)); // Use SphereForm directly from libigor answer = SphereForm(dp,q)*Zq; //consider scales answer *= latticeScale * pars->scale; // This FIXES a singualrity the kernel in libigor. if ( answer == INFINITY || answer == NAN){ answer = 0.0; } // add background answer += pars->background; return answer; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the SC_ParaCrystal * @param q: q-value * @return: function value */ static double sc_analytical_2DXY(SCParameters *pars, double qx, double qy){ double q; q = sqrt(qx*qx+qy*qy); return sc_analytical_2D_scaled(pars, q, qx/q, qy/q); } SCCrystalModel :: SCCrystalModel() { scale = Parameter(1.0); dnn = Parameter(220.0); d_factor = Parameter(0.06); radius = Parameter(40.0, true); radius.set_min(0.0); sldSph = Parameter(3.0e-6); sldSolv = Parameter(6.3e-6); background = Parameter(0.0); theta = Parameter(0.0, true); phi = Parameter(0.0, true); psi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double SCCrystalModel :: operator()(double q) { double dp[7]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = dnn(); dp[2] = d_factor(); dp[3] = radius(); dp[4] = sldSph(); dp[5] = sldSolv(); dp[6] = 0.0; // Get the dispersion points for the radius vector weights_rad; radius.get_weights(weights_rad); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; double result; // Loop over radius weight points for(size_t i=0; i weights_rad; radius.get_weights(weights_rad); // Get angular averaging for theta vector weights_theta; theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; phi.get_weights(weights_phi); // Get angular averaging for psi vector weights_psi; psi.get_weights(weights_psi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; double pi = 4.0*atan(1.0); // Loop over radius weight points for(size_t i=0; i1) { _ptvalue *= fabs(cos(weights_theta[j].value*pi/180.0)); } sum += _ptvalue; // This model dose not need the volume of spheres correction!!! //Find average volume //vol += weights_rad[i].weight // * pow(weights_rad[i].value,3); //Find norm for volume //norm_vol += weights_rad[i].weight; norm += weights_rad[i].weight * weights_theta[j].weight * weights_phi[k].weight * weights_psi[l].weight; } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); if (vol != 0.0 && norm_vol != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the SCCrystal * @param q: q-value * @param phi: angle phi * @return: function value */ double SCCrystalModel :: evaluate_rphi(double q, double phi) { return (*this).operator()(q); } /** * Function to calculate effective radius * @return: effective radius value */ double SCCrystalModel :: calculate_ER() { //NOT implemented yet!!! return 0.0; } double SCCrystalModel :: calculate_VR() { return 1.0; }