/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: add 2D function */ #include #include "parameters.hh" #include using namespace std; #include "lamellarPS_HG.h" extern "C" { #include "libCylinder.h" } LamellarPSHGModel :: LamellarPSHGModel() { scale = Parameter(1.0); spacing = Parameter(40.0, true); spacing.set_min(0.0); deltaT = Parameter(10.0, true); deltaT.set_min(0.0); deltaH = Parameter(2.0, true); deltaH.set_min(0.0); sld_tail = Parameter(4e-7); sld_head = Parameter(2e-6); sld_solvent = Parameter(6e-6); n_plates = Parameter(30); caille = Parameter(0.001); background = Parameter(0.001); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double LamellarPSHGModel :: operator()(double q) { double dp[10]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = spacing(); dp[2] = deltaT(); dp[3] = deltaH(); dp[4] = sld_tail(); dp[5] = sld_head(); dp[6] = sld_solvent(); dp[7] = n_plates(); dp[8] = caille(); dp[9] = 0.0; // Get the dispersion points for (deltaT) thickness of the tail vector weights_deltaT; deltaT.get_weights(weights_deltaT); // Get the dispersion points for (deltaH) thickness of the head vector weights_deltaH; deltaH.get_weights(weights_deltaH); // Get the dispersion points for spacing vector weights_spacing; spacing.get_weights(weights_spacing); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Loop over deltaT weight points for(int i=0; i< (int)weights_deltaT.size(); i++) { dp[2] = weights_deltaT[i].value; // Loop over deltaH weight points for(int j=0; j< (int)weights_deltaH.size(); j++) { dp[3] = weights_deltaH[j].value; // Loop over spacing weight points for(int k=0; k< (int)weights_spacing.size(); k++) { dp[1] = weights_spacing[k].value; sum += weights_deltaT[i].weight * weights_deltaH[j].weight *weights_spacing[k].weight *LamellarPS_HG(dp, q); norm += weights_deltaT[i].weight * weights_deltaH[j].weight * weights_spacing[k].weight; } } } return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double LamellarPSHGModel :: operator()(double qx, double qy) { double q = sqrt(qx*qx + qy*qy); return (*this).operator()(q); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the lamellarPS_HG * @param q: q-value * @param phi: angle phi * @return: function value */ double LamellarPSHGModel :: evaluate_rphi(double q, double phi) { return (*this).operator()(q); } /** * Function to calculate effective radius * @return: effective radius value */ double LamellarPSHGModel :: calculate_ER() { //NOT implemented yet!!! return 0.0; } double LamellarPSHGModel :: calculate_VR() { return 1.0; }