/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: add 2D function */ #include #include "parameters.hh" #include #include using namespace std; extern "C" { #include "libCylinder.h" #include "libStructureFactor.h" #include "libmultifunc/libfunc.h" } #include "RectangularPrism.h" // Convenience parameter structure typedef struct { double scale; double short_side; double b2a_ratio; double c2a_ratio; double sldPipe; double sldSolv; double background; } RectangularPrismParameters; RectangularPrismModel :: RectangularPrismModel() { scale = Parameter(1.0); short_side = Parameter(35.0, true); short_side.set_min(1.0); b2a_ratio = Parameter(1.0, true); b2a_ratio.set_min(1.0); c2a_ratio = Parameter(1.0, true); c2a_ratio.set_min(1.0); sldPipe = Parameter(6.3e-6); sldSolv = Parameter(1.0e-6); background = Parameter(0.0); } /** * Function to evaluate 1D scattering function * @param q: q-value * @return: function value */ double RectangularPrismModel :: operator()(double q) { double dp[7]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = short_side(); dp[2] = b2a_ratio(); dp[3] = c2a_ratio(); dp[4] = sldPipe(); dp[5] = sldSolv(); dp[6] = 0.0; // Get the dispersion points for a vector weights_short_side; short_side.get_weights(weights_short_side); // Get the dispersion points for b/a ratio vector weights_b2a_ratio; b2a_ratio.get_weights(weights_b2a_ratio); // Get the dispersion points for c/a ratio vector weights_c2a_ratio; c2a_ratio.get_weights(weights_c2a_ratio); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over short_side weight points for (int i=0; i < (int)weights_short_side.size(); i++) { dp[1] = weights_short_side[i].value; // Loop over b/a ratios for (int j=0; j < (int)weights_b2a_ratio.size(); j++) { dp[2] = weights_b2a_ratio[j].value; // Loop over c/a ratios for (int k=0; k < (int)weights_c2a_ratio.size(); k++) { dp[3] = weights_c2a_ratio[k].value; // Un-normalize by volume = a * (a * b/a) * (a * c/a) double vol_i = dp[1] * dp[1] * dp[2] * dp[1] * dp[3]; sum += weights_short_side[i].weight * weights_b2a_ratio[j].weight * weights_c2a_ratio[k].weight * RectangularPrism(dp, q) * vol_i; //Find average volume (ABC) vol += weights_short_side[i].weight * weights_b2a_ratio[j].weight * weights_c2a_ratio[k].weight * vol_i; norm += weights_short_side[i].weight * weights_b2a_ratio[j].weight * weights_c2a_ratio[k].weight; } } } if (vol != 0.0 && norm != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double RectangularPrismModel :: operator()(double qx, double qy) { return 1.0; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the cylinder * @param q: q-value * @param phi: angle phi * @return: function value */ double RectangularPrismModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); } /** * Function to calculate effective radius * @return: effective radius value */ double RectangularPrismModel :: calculate_ER() { return 1.0; } double RectangularPrismModel :: calculate_VR() { return 1.0; }