1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | #include "DiamEllip.h" |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libStructureFactor.h" |
---|
30 | } |
---|
31 | |
---|
32 | DiamEllipFunc :: DiamEllipFunc() { |
---|
33 | radius_a = Parameter(20.0, true); |
---|
34 | radius_a.set_min(0.0); |
---|
35 | radius_b = Parameter(400, true); |
---|
36 | radius_b.set_min(0.0); |
---|
37 | } |
---|
38 | |
---|
39 | /** |
---|
40 | * Function to evaluate 1D scattering function |
---|
41 | * The NIST IGOR library is used for the actual calculation. |
---|
42 | * @param q: q-value |
---|
43 | * @return: function value |
---|
44 | */ |
---|
45 | double DiamEllipFunc :: operator()(double q) { |
---|
46 | double dp[2]; |
---|
47 | |
---|
48 | // Fill parameter array for IGOR library |
---|
49 | // Add the background after averaging |
---|
50 | dp[0] = radius_a(); |
---|
51 | dp[1] = radius_b(); |
---|
52 | |
---|
53 | // Get the dispersion points for the radius a |
---|
54 | vector<WeightPoint> weights_rad_a; |
---|
55 | radius_a.get_weights(weights_rad_a); |
---|
56 | |
---|
57 | // Get the dispersion points for the radius b |
---|
58 | vector<WeightPoint> weights_rad_b; |
---|
59 | radius_b.get_weights(weights_rad_b); |
---|
60 | |
---|
61 | // Perform the computation, with all weight points |
---|
62 | double sum = 0.0; |
---|
63 | double norm = 0.0; |
---|
64 | |
---|
65 | // Loop over radius weight points |
---|
66 | for(size_t i=0; i<weights_rad_a.size(); i++) { |
---|
67 | dp[0] = weights_rad_a[i].value; |
---|
68 | // Loop over length weight points |
---|
69 | for(size_t j=0; j<weights_rad_b.size(); j++) { |
---|
70 | dp[1] = weights_rad_b[j].value; |
---|
71 | |
---|
72 | sum += weights_rad_a[i].weight*weights_rad_b[j].weight |
---|
73 | * DiamEllip(dp[0], dp[1]); |
---|
74 | norm += weights_rad_a[i].weight*weights_rad_b[j].weight; |
---|
75 | } |
---|
76 | } |
---|
77 | return sum/norm ; |
---|
78 | } |
---|
79 | |
---|
80 | /** |
---|
81 | * Function to evaluate 2D scattering function |
---|
82 | * @param q_x: value of Q along x |
---|
83 | * @param q_y: value of Q along y |
---|
84 | * @return: function value |
---|
85 | */ |
---|
86 | double DiamEllipFunc :: operator()(double qx, double qy) { |
---|
87 | double q = sqrt(qx*qx + qy*qy); |
---|
88 | return (*this).operator()(q); |
---|
89 | } |
---|
90 | /** |
---|
91 | * Function to evaluate 2D scattering function |
---|
92 | * @param pars: parameters of the cylinder |
---|
93 | * @param q: q-value |
---|
94 | * @param phi: angle phi |
---|
95 | * @return: function value |
---|
96 | */ |
---|
97 | double DiamEllipFunc :: evaluate_rphi(double q, double phi) { |
---|
98 | double qx = q*cos(phi); |
---|
99 | double qy = q*sin(phi); |
---|
100 | return (*this).operator()(qx, qy); |
---|
101 | } |
---|
102 | /** |
---|
103 | * Function to calculate effective radius |
---|
104 | * @return: effective radius value |
---|
105 | */ |
---|
106 | double DiamEllipFunc :: calculate_ER() { |
---|
107 | //NOT implemented yet!!! |
---|
108 | return 0.0; |
---|
109 | } |
---|
110 | double DiamEllipFunc :: calculate_VR() { |
---|
111 | return 1.0; |
---|
112 | } |
---|